MC500[™] Multi-Parameter Colorimeter

Instruction Manual

Safety precautions

⚠ CAUTION ⚠

Reagents are formulated exclusively for chemical analysis and must not be used for any other purpose. Keep reagents out of reach of children. Some reagents contain compounds which are not entirely harmless environmentally. Be aware of the ingredients and take proper care when disposing of the test solution.

CAUTION

Please read this instruction manual before unpacking, setting up or using the colorimeter. Please read the method description completely before performing the test. Be aware of the risks of using the required reagents by reading the MSDS (Material Safety Data Sheets). Failure could result in serious injury to the operator or damage to the instrument.

Δ caution Δ

The accuracy of the instrument is only valid if the instrument is used in an environment with controlled electromagnetic disturbances according to DIN 61326. Wireless devices, e.g. wireless phones, should not be used near the instrument.

Table of contents

Part 1 METHODS	
1.1 Table of Methods	
Acid demand to pH 4.3	12
Alkalinity-total (Alkalinity-m, m-Value)	14
Alkalinity-p (p-value)	16
Aluminum with tablets	18
Aluminum (powder pack)	20
Ammonia with tablets	22
Ammonia (powder pack)	24
Ammonia, low range (LR)	26
Ammonia, high range (HR)	28
Boron	30
Bromine	32
Chloride	34
Chlorine	36
Chlorine with tablet	
differentiated determination (free, combined, total)	38
free Chlorine	40
total Chlorine	41
Chlorine with liquid reagent	
differentiated determination (free, combined, total)	42
free Chlorine	44
total Chlorine	45
Chlorine (powder pack)	
differentiated determination (free, combined, total)	46
free Chlorine	48
total Chlorine	49
Chlorine dioxide	50
in presence of Chlorine	52
in absence of Chlorine	55
Chlorine HR (KI)	56
COD, low range (LR)	
COD, middle range (MR)	
COD, high range (HR)	
Copper with tablet	64
differentiated determination (free, combined, total)	
free Copper	66
total Copper	67
Copper PP	68
Cyanide	70

Cyanuric acid	
DEHA T	74
DEHA PP	76
Fluoride	78
Hardness, Calcium	80
Hardness, total	82
Hardness, total HR	84
Hydrazine	86
Hydrazine with liquid reagent	88
Hydrazine with Vacu-vials	90
Hydrogen peroxide	92
lodine	94
Iron	96
Iron with tablet	98
Iron (powder packs)	100
Iron (TPTZ) (powder packs)	102
Manganese with tablet	104
Manganese LR (powder packs)	106
Manganese HR (powder packs)	108
Molybdate with tablet	110
Molybdate HR (powder pack)	112
Nitrate	114
Nitrite with tablet	116
Nitrite LR (powder pack)	118
Nitrogen, total LR	120
Nitrogen, total HR	122
Oxygen, active	124
Oxygen, dissolved	126
Ozone	128
in presence of Chlorine	130
in absence of Chlorine	132
PHMB (Biguanide)	134
Phosphate	136
Phosphate, ortho LR with tablet	138
Phosphate, ortho HR with tablet	140
Phosphate, ortho (powder packs)	142
Phosphate, ortho (tube test)	144
Phosphate 1, ortho C	146
Phosphate 2, ortho C	
Phosphate, hydrolysable (tube test)	
Phosphate, total (tube test)	152

pH-Value	e LR with tablet	154
pH-Value	e with tablet	156
pH-Value	e with liquid reagent	158
pH-Value	e HR with tablet	160
Potassiu	ım	162
Silica		164
Silica LR	PP	166
	R PP	
	hypochlorite	
	「	
	powder pack)	
Zinc		182
1.2	Important notes	18/
1.2.1	Correct use of reagents	
1.2.2	Cleaning vials and accessories for analysis	
1.2.3	Guidelines for photometric measurements	
1.2.4	Sample dilution tegniques	
1.2.5	Correcting for volume additions	
Part 2	2 INSTRUMENT MANUAL	189
2.1	Operation	190
2.1.1	Commissioning	190
2.1.2	Saving data – Important Notes	190
2.1.3	Replacement of batteries	190
2.1.4	Instrument (explosion drawing)	19 ⁻
2.2	Overview of function keys	193
2.2.1	Overview	193
2.2.2	Displaying time and date	194
2.2.3	User-countdown	194
2.3	Operation mode	19
2.3.1	Automatic switch off	19
2.3.2	Selecting a method	19
2.3.2.1	Method-information	195
2.3.2.2	Chemical Species Information	196
2.3.3	Differentiation	196

2.3.4	Performing Zero	196
2.3.5	Performing Test	197
2.3.6	Ensuring reaction periods (countdown)	197
2.3.7	Changing chemical species	198
2.3.8	Storing results	198
2.3.9	Printing results	199
2.3.10	Perform additional measurements	199
2.3.11	Selecting a new method	200
2.3.12	Measure absorbance	200
2.4	Photometer settings <mode-menu></mode-menu>	201
2.4.1	blank because of technical requirements	
2.4.2	Instrument basic settings 1	202
2.4.3	Printing of stored results	206
2.4.4	Recall / delete stored results	211
2.4.5	Calibration	215
2.4.6	Lab function	221
2.4.7	User operations	222
2.4.8	Special functions	232
2.4.9	Instrument basic settings 2	234
2.4.10	Instrument special functions / Service	234
2.5	Data transfer	235
2.5.1	Print of data	235
2.5.2	Data transfer to a personal computer (PC)	235
2.5.3	Internet-Updates	235
Part 3	SHIPPING CONTENTS	 23 7
3.1	Unpacking	238
3.2	Delivery content	238
3.3	blank because of technical requirements	
3.4	Technical data	239
3.5	Abbreviations	240
3.6	Troubleshooting	241
3.6.1	Operating messages in the display / error display	241
3.6.2	General problems	243

Part 1

Methods

1.1 Table of Methods

No.	Analysis	Reagent	Range	Displayed as	Method	λ [nm]	Page
20	Acid demand to pH 4.3 T	tablet	0.1-4	mmol/l	Acid/Indicator ^{1,2,5}	610	12
30	Alkalinity, total T	tablet	5-200	mg/I CaCO ₃	Acid/Indicator ^{1,2,5}	610	14
35	Alkalinity-p T	tablet	5-500	mg/l CaCO₃	Acid/Indicator ^{1,2,5}	560	16
40	Aluminum T	tablet	0.01-0.3	mg/l Al	Eriochrome Cyanine R ²	530	18
50	Aluminum PP	PP + liquid	0.01-0.25	mg/l Al	Eriochrome Cyanine R ²	530	20
60	Ammonium T	tablet	0.02-1	mg/l N	Indophenol blue 2,3	610	22
62	Ammonium PP	PP	0.01-0.8	mg/l N	Salicylate ²	660	24
65	Ammonium LRTT	tube test	0.02-2.5	mg/l N	Salicylate ²	660	26
66	Ammonium HRTT	tube test	1-50	mg/l N	Salicylate ²	660	28
85	Boron T	tablet	0.1-2	mg/l B	Azomethine ³	430	30
80	Bromine T	tablet	0.05-13	mg/l Br ₂	DPD ⁵	530	32
90	Chloride T	tablet	0.5 -25	mg/l Cl	Silver nitrate/ turbidity	530	34
100	Chlorine T *	tablet	0.01-6	mg/I Cl ₂	DPD ^{1,2,3}	530	36, 38
101	Chlorine L*	liquid	0.02-4	mg/I Cl ₂	DPD ^{1,2,3}	530	36, 42
110	Chlorine PP *	PP	0.02-2	mg/l Cl ₂	DPD ^{1,2}	530	36, 46
120	Chlorine dioxide T	tablet	0.05-11	mg/I CIO ₂	DPD, Glycine 1,2	530	50
105	Chlorine HR (KI) T	tablet	5-200	mg/l Cl ₂	KI/Acid⁵	530	56
130	COD LRTT	tube test	0 -150	mg/I O ₂	Dichromate/H ₂ SO ₄ ^{1,2}	430	58
131	COD MR TT	tube test	0 -1500	mg/I O ₂	Dichromate/H ₂ SO ₄ ^{1,2}	610	60
132	COD HRTT	tube test	0 -15	g/l O ₂	Dichromate/H ₂ SO ₄ ^{1,2}	610	62
150	Copper T *	tablet	0.05-5	mg/l Cu	Biquinoline ⁴	560	64
153	Copper PP	PP	0.05-5	mg/l Cu	Bicinchoninate	560	68
157	Cyanide	PP + liquid	0.01-0.5	mg/l CN	Pyridine- barbituric acid ¹	580	70
160	Cyanuric acid T	tablet	2-160	mg/l Cys	Melamine	530	72
165	DEHA T	tablet + liquid	20-500	μg/l DEHA	PPST ³	560	74
167	DEHA PP	PP + liquid	20-500	μg/l DEHA	PPST ³	560	76
170	Fluoride L	liquid	0.05-2	mg/l F	SPADNS ²	580	78
190	Hardness, Calcium T	tablet	50-900	mg/I CaCO ₃	Murexide ⁴	560	80

^{* =} free, combined, total; PP = powder pack; T = tablet;

 $L=liquid; TT=tube\ test; LR=low\ range; MR=middle\ range; HR=high\ range; Vacu-vial* is a registered\ trade\ mark\ of\ CHEMetrics\ Inc.$

1.1 Table of Methods

No.	Analysis	Reagent	Range	Displayed as	Method	λ [nm]	Page
200	Hardness, total T	tablet	2-50	mg/I CaCO ₃	Metallphthalein ³	560	82
201	Hardness, total HRT	tablet	20-500	mg/I CaCO ₃	Metallphthalein ³	560	84
205	Hydrazine P	powder	0.05-0.5	mg/I N ₂ H ₄	4-(Dimethyl- amino)- benzaldehyde ³	430	86
206	Hydrazine L	liquid	0.01-0.6	mg/I N ₂ H ₄	4-(Dimethyl- amino)- benzaldehyde ³	430	88
207	Hydrazine C	Vacu-vial	0.01-0.7	mg/l N ₂ H ₄	PDMAB	430	90
210	Hydrogen peroxide	tablet	0.03-3	mg/I H ₂ O ₂	DPD/catalyst ⁵	530	92
215	Iodine T	tablet	0.05-3.6	mg/l l	DPD⁵	530	94
220	Iron T	tablet	0.02-1	mg/l Fe	PPST ³	560	96, 98
222	Iron PP	PP	0.02-3	mg/l Fe	1,10-Phenan- troline ³	530	96, 100
223	Iron (TPTZ) PP	PP	0.02-1.8	mg/l Fe	TPTZ	580	96, 102
240	Manganese T	tablet	0.2-4	mg/l Mn	Formaldoxime	530	104
242	Manganese LR PP	PP + liquid	0.01-0.7	mg/l Mn	PAN	560	106
243	Manganese HR PP	PP + liquid	0,1-18	mg/l Mn	Periodate oxidation ²	530	108
250	Molybdate T	tablet	1-50	mg/l MoO ₄	Thioglycolate ⁴	430	110
252	Molybdate HR PP	PP	0.5-66	mg/I MoO ₄	Mercaptoacetic acid	430	112
265	Nitrate TT	tube test	1-30	mg/l N	Chromotropic acid	430	114
270	Nitrite T	tablet	0.01-0.5	mg/l N	N-(1-Naphthyl)- ethylendiamine ^{2,3}	560	116
272	Nitrite LR PP	PP	0.01-0.3	mg/l N	Diazotization	530	118
280	Nitrogen, total LRTT	tube test	0.5-25	mg/l N	Persulfate digestion method	430	120
281	Nitrogen, total HRTT	tube test	5-150	mg/l N	Persulfate digestion method	430	122
290	Oxygen, active T	tablet	0.1-10	mg/l O ₂	DPD	530	124
292	Oxygen, dissolved	Vacu-vial	10-800	μg/I O ₂	Rhodazine D™	530	126
300	Ozone (DPD) T	tablet	0.02-1	mg/I O ₃	DPD/Glycine⁵	530	128
70	PHMBT	tablet	2-60	mg/l PHMB	Buffer/Indicator	560	134

^{* =} free, combined, total; PP = powder pack; T = tablet;

 $L = liquid; TT = tube \ test; LR = low \ range; MR = middle \ range; HR = high \ range; Vacu-vial* is a registered trade mark of CHEMetrics Inc.$

1.1 Table of Methods

No.	Analysis	Reagent	Range	Displayed as	Method	λ [nm]	Page
320	Phosphate, T ortho LR	tablet	0.05-4	mg/I PO ₄	Ammonium- molybdate ^{2,3}	660	136, 138
321	Phosphate, ortho HRT	tablet	1-80	mg/I PO ₄	Vanando- molybdate ²	430	136, 140
323	Phosphate, PP ortho	PP	0.06-2.5	mg/I PO ₄	Ascorbic acid ²	660	136, 142
324	Phosphate, ortho	tube test	0.06-5	mg/I PO ₄	Ascorbic acid ²	660	136, 144
327	Phosphate 1 C, ortho	Vacu-vial	5-40	mg/I PO ₄	Vanado- molybdate ²	430	136, 146
328	Phosphate 2 C, ortho	Vacu-vial	0.05-5	mg/I PO ₄	Stannous chloride ²	660	136, 148
325	Phosphate, hydr. TT	tube test	0.02-1.6	mg/I P	Acid digestion, Ascorbic acid ²	660	136, 150
326	Phosphate, total TT	tube test	0.02-1.1	mg/I P	Acid persulf digestion, Ascorbic acid ²	660	136, 152
329	pH-Value LRT	tablet	5.2-6.8	_	Bromocresolpurple ⁵	560	154
330	pH-Value T	tablet	6.5-8.4	_	Phenolred ⁵	560	156
331	pH-Value L	liquid	6.5-8.4	_	Phenolred⁵	560	158
332	pH-Value HRT	tablet	8.0-9.6	_	Thymolblue ⁵	560	160
340	Potassium T	tablet	0.7-12	mg/l K	Tetraphenylborate- Turbidity ⁴	430	162
350	Silica T	tablet	0.05-4	mg/l SiO ₂	Silicomolybdate ^{2,3}	660	164
351	Silica LR PP	PP	0.1-1.6	mg/l SiO ₂	Heteropolyblue ²	660	166
352	Silica HR PP	PP	1-90	mg/l SiO ₂	Silicomolybdate ²	430	168
212	Sodium hypochlorite T	tablet	0.2-16	% NaOCI	Potassium iodide 5	530	170
355	Sulfate T	tablet	5-100	mg/I SO ₄	Bariumsulfate- Turbidity	610	172
360	Sulfate PP	PP	5-100	mg/I SO ₄	Bariumsulfate- Turbidity ²	530	174
365	Sulfide	tablet	0.04-0.5	mg/l S	DPD/Catalyst 3,4	660	176
370	Sulfite T	tablet	0.1-5	mg/I SO ₃	DTNB	430	178
390	Urea T	tablet + liquid	0.1-3	mg/l Urea	Indophenol/ Urease	610	180
400	Zinc T	tablet	0.02 -1	mg/l Zn	Zincon ³	610	182

^{* =} free, combined, total; PP = powder pack; T = tablet;

 $L=liquid; TT=tube\ test; LR=low\ range; MR=middle\ range; HR=high\ range; Vacu-vial* is a registered\ trade\ mark\ of\ CHEMetrics\ Inc.$

Literature

The reagent formulations are based on internationally recognized test methods. Some are described in national and/or international guidelines.

- 1) Unified German Procedures for the Analysis of Water and Wastewater
- 2) Standard Methods for the Examination of Water and Wastewater; 18th Edition, 1992
- Photometric Analysis Procedures, Schwedt, Scientific Publishing Company Society, Stuttgart, 1989
- 4) Photometric Analysis, Lange / Vejdelek, 1980
- 5) Colorimetric Chemical Analytical Methods, 9th Edition, London

Notes for searching:

Active Oxygen	->	Oxygen, active
Alkalinity-m	->	Alkalinity, total
Alkalinity, total	->	Alkalinity, total
Biguanide	->	PHMB
Calcium Hardness	->	Hardness, Calcium
Total Hardness	->	Hardness, total
m-Value	->	Alkalinity, total
p-Value	->	Alkalinity-p
Silicon dioxide	->	Silica
total Alkalinity	->	Alkalinity, total
total Hardness	->	Hardness, total

Langelier Saturation -> Index (Water Balance)

Mode function 70

Important Notes for use of this manual - PLEASE READ:

1) The Method number for each test is indicated in the large circles at the beginning of each procedure. Here is an example:

- 2) The Symbol "Ø" signifies the OUTSIDE Diameter of the Sample Vial
- 3) Please note the appropriate reagent platform (tablet, powder, vial, etc.) for each test.
- 4) Be sure to observe the proper reagent reaction time indicated for each procedure for accurate results.

Acid demand to pH 4.3 with Tablet

0.1 – 4 mmol/l

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one ALKA-M-PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display as Acid demand to pH 4.3 in mmol/l.

Notes:

- 1. The terms total Alkalinity, Alkalinity-m, m-Value and Acid demand to pH 4.3 are identical.
- 2. For accurate results, be sure to test on exactly 10 ml of water sample.

Alkalinity, total = Alkalinity-m = m-Value with Tablet

5 - 200 mg/l CaCO₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one ALKA-M-PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

The result is shown in the display as total Alkalinity.

Notes:

- 1. The terms total Alkalinity, Alkalinity-m, m-Value and Alkalinity to pH 4.3 are identical.
- 2. For accurate results exactly 10 ml of water sample must be taken for the test.
- 3. Conversion table:

	Acid demand to pH 4.3	German	English	French
	DIN 38 409 (Ks4.3)	°dH*	°eH*	°fH*
1 mg/l CaCO ₃	0.02	0.056	0.07	0.1

^{*}Carbonate hardness (reference = Hydrogen carbonate-anions)

Example:

10 mg/l $CaCO_3 = 10$ mg/l $\times 0.056 = 0.56$ mg/l °dH 10 mg/l $CaCO_3 = 10$ mg/l $\times 0.02 = 0.2$ mmol/l

4. **A** CaCO₃

°dH

°eH

°fH

▼ °aH

Alkalinity-p = p-value with Tablet

5 - 500 mg/l CaCO,

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one ALKA-P-PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display as Alkalinity-p.

Notes

- 1. The terms Alkalinity-p, p-Value and Alkalinity to pH 8.2 are identical.
- 2. For accurate test results exactly 10 ml of water sample must be taken for the test.
- 3. This method was developed from a volumetric procedure for the determination of Alkalinity-p. Due to undefined conditions, the deviations from the standardized method may be greater.
- 4. Conversion table:

	mg/l CaCO ₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0.056	0.10	0.07
1 °dH	17.8		1.78	1.25
1 °fH	10.0	0.56		0.70
1 °eH	14.3	0.80	1.43	

°dH

°еН

°fH

▼ °aH

5. By determining Alkalinity-p and Alkalinity-m it is possible to classify the alkalinity as Hydroxide, Carbonate and Hydrogencarbonate.

The following differentiation is only valid if:

- a) no other alkalis are present and
- b) Hydroxide and Hydrogen are not present in the same water sample.

Case 1: Alkalinity-p = 0

Hydrogen carbonate = m

Carbonate = 0Hydroxide = 0

Case 2: Alkalinity-p > 0 and Alkalinity-m > 2p

Hydrogen carbonate = m - 2p

Carbonate = 2p Hydroxide = 0

Case 3: Alkalinity-p > 0 and Alkalinity-m < 2p

Hydrogen carbonate = 0Carbonate = 2m - 2pHydroxide = 2p - m

Aluminum with Tablet

0.01 - 0.3 mg/l Al

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one ALUMINUM No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod (dissolve the tablet).
- Add one ALUMINUM No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl gently several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 5:00

9. Press **TEST** key.
Wait for a **reaction period of 5 minutes.**

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Aluminum.

Notes:

- 1. Before using clean the vials and the measuring beaker with Hydrochloric acid (approx. 20%). Rinse then thoroughly with deionized water.
- 2. To get accurate results the sample temperature must be between 20°C and 25°C.
- 3. A low test result may be given in the presence of Fluorides and Polyphosphates.

 The effect of this is generally insignificant unless the water has fluoride added artificially.

 In this case, the following table should be used:

Fluoride		Displayed value: Aluminum [mg/l Al]				
[mg/l F]	0.05	0.10	0.15	0.20	0.25	0.30
0.2	0.05	0.11	0.16	0.21	0.27	0.32
0.4	0.06	0.11	0.17	0.23	0.28	0.34
0.6	0.06	0.12	0.18	0.24	0.30	0.37
0.8	0.06	0.13	0.20	0.26	0.32	0.40
1.0	0.07	0.13	0.21	0.28	0.36	0.45
1.5	0.09	0.20	0.29	0.37	0.48	

Example: If the result of Aluminum determination is 0.15 mg/l Al and the Fluoride concentration is known to be 0.4 mg/l F. the true concentration of Aluminum is 0.17 mg/l Al.

Aluminum with Powder Pack

0.01 - 0.25 mg/l Al

Use two clean vials (24 mm \emptyset) and mark one as blank for zeroing.

- 1. Fill 20 ml of the water sample in a 100 ml beaker.
- Add the contents of one Aluminum ECR F20 Powder Pack straight from the foil to the water sample.
- 3. Dissolve the powder using a clean stirring rod.

Countdown 1 0:30 start: _

Press [] key.
 Wait for a reaction period of 30 seconds.

After the reaction period is finished proceed as follows:

- 5. Add the contents of **one Hexamine F20 Powder Pack** straight from the foil to the same water sample.
- 6. Dissolve the powder using a clean stirring rod.
- Add 1 drop of Aluminum ECR Masking Reagent in the vial marked as blank.
- Add 10 ml of the prepared water sample to the vial (this is the blank).
- 9. Add the remaining 10 ml of the prepared water sample in the second clean vial (this is the sample).
- 10. Close the vials tightly with the caps and swirl several times to mix the contents.

Countdown 2 5:00 start: 🚽

11. Press [₄] key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished proceed as follows:

12. Place the vial (the blank) in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 13. Press ZERO key.
- 14. Remove the vial from the sample chamber.
- 15. Place the vial (the sample) in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

16. Press **TEST** key.

The result is shown in the display in mg/l Aluminum.

Notes:

- 1. Before using clean the vials and the measuring beaker with Hydrochloric acid (approx. 20%). Rinse then thoroughly with deionized water.
- 2. To get accurate results the sample temperature must be between 20°C and 25°C.
- 3. A low test result may be given in the presence of Fluorides and Polyphosphates. The effect of this is generally insignificant unless the water has fluoride added artificially. In this case, the following table should be used:

Fluoride	Displayed value: Aluminum [mg/l Al]					
[mg/l F]	0.05	0.10	0.15	0.20	0.25	0.30
0.2	0.05	0.11	0.16	0.21	0.27	0.32
0.4	0.06	0.11	0.17	0.23	0.28	0.34
0.6	0.06	0.12	0.18	0.24	0.30	0.37
0.8	0.06	0.13	0.20	0.26	0.32	0.40
1.0	0.07	0.13	0.21	0.28	0.36	0.45
1.5	0.09	0.20	0.29	0.37	0.48	

Example: If the result of Aluminum determination is 0.15 mg/l Al and the Fluoride concentration is known to be 0.4 mg/l F, the true concentration of Aluminum is 0.17 mg/l Al.

4. 📤 AI

▼ Al₂O₃

Ammonium with Tablet

0.02 - 1 mg/l N

Ø 24 mm

1. Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

- 4. Remove the vial from the sample chamber.
- 5. Add one AMMONIA No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Add one AMMONIA No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00

9. Press TEST key. Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Ammonium.

Notes:

- 1. The tablets must be added in the correct sequence.
- 2. The AMMONIA No. 1 tablet will only dissolve completely after the AMMONIA No. 2 tablet has been added.
- 3. The temperature of the sample is important for full color development. At a temperature below 20°C the reaction period is 15 minutes.
- 4. Sea water samples:

Ammonia conditioning reagent is required when testing sea water or brackish water samples to prevent precipitations of salts.

Fill the test tube with the sample to the 10 ml mark and add one level spoonful of Conditioning Powder. Mix to dissolve, then continue as described in the test instructions.

5. Conversion:

 $mg/l NH_4 = mg/l N \times 1.29$ $mg/l NH_3 = mg/l N \times 1.22$

6. A N

NH,

▼ NH,

Ammonium with Powder Pack

0.01 - 0.8 mg/l N

Ø 24 mm

Countdown 1 3:00 start: _

Use two clean vials (24 mm $\ensuremath{\mathcal{O}}$) and mark one as blank for zeroing.

- Fill a clean vial (24 mm Ø) with 10 ml of deionized water (this is the blank).
- Fill the other clean vial (24 mm Ø) with 10 ml of the water sample (this is the sample).
- Add the contents of one Ammonia Salicylate F10 Powder Pack straight from the foil to each vial.
- Close the vials with the caps and shake to mix the contents.
- Press [] key.
 Wait for a reaction period of 3 minutes.

•

After the reaction period is finished proceed as follows:

- Add the contents of one Ammonia Cyanurate F10 Powder Pack straight from the foil to each sample.
- Close the vials tightly with the caps and shake to mix the contents.

Countdown 2 15:00 start:

prepare Zero press ZERO

Press [] key.
 Wait for a reaction period of 15 minutes.

After the reaction period is finished proceed as follows:

9. Place the vial (the blank) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

10. Press **ZERO** key.

- 11. Remove the vial from the sample chamber.
- 12. Place the vial (the sample) in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

13. Press TEST key.

The result is shown in the display in mg/l Ammonium.

Notes:

- 1. Extremely basic or acidic water samples should be adjusted with 0.5 mol/l (1 N) Sulfuric acid solution or 1 mol/l (1 N) Sodium hydroxide solution to pH 7.
- 2. Interferences:

Interfering substance	Interference levels and treatments			
Calcium	greater than 1000 mg/I CaCO ₃			
Iron	Interferes at all levels. Correct as follows:			
	a) determine the concentration of iron present in the sample by performing a total Iron test			
	b) add the same iron concentration as determined to the deionized water (step 1).			
	The interference will be blanked out successfully.			
Magnesium	greater than 6000 mg/l CaCO ₃			
Nitrate	greater than 100 mg/l NO ₃ -N			
Nitrite	greater than 12 mg/I NO ₂ -N			
Phosphate	greater than 100 mg/l PO ₄ -P			
Sulfate	greater than 300 mg/l SO ₄			
Sulfide	intensifies the color			
Glycine, Hydrazine, Colour, Turbidity	Less common interferences such as Hydrazine and Glycine will cause intensified colors in the prepared sample. Turbidity and color will give erroneous high values. Samples with severe interferences require distillation.			

3. ▲ N NH₄

▼ NH,

Ammonium LR with Vario Tube Test

0.02 - 2.5 mg/l N

Insert the adapter for 16 mm Ø vials.

- Open one white capped reaction vial and add 2 ml deionized water (this is the blank).
- Open another white capped reaction vial and add 2 ml of the water sample (this is the sample).

- Add the contents of one AMMONIA Salicylate F5 Powder Pack straight from the foil into each vial.
- Add the contents of one AMMONIA Cyanurate F5 Powder Pack straight from the foil into each vial.
- 5. Close the vials tightly with the caps and swirl several times to dissolve the powder.

Countdown 1 20:00 start: 🗐

Press [] key.
 Wait for a reaction period of 20 minutes.

After the reaction period is finished proceed as follows:

 Place the vial (the blank) in the sample chamber making sure that the marks are
 \(\lambda \) aligned.

prepare Zero press ZERO

- 8. Press ZERO key.
- 9. Remove the vial from the sample chamber.
- 10. Place the vial (the sample) in the sample chamber making sure that the marks are $\frac{1}{\lambda}$ aligned.

Zero accepted prepare Test press TEST

11. Press TEST key.

The result is shown in the display in mg/l Ammonium.

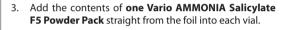
Notes:

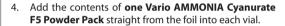
- 1. Strong alkaline or acidic water samples must be adjusted to approx. pH 7 before analysis (use 1 mol/l Hydrochloric acid resp. 1 mol/l Sodium hydroxide).
- 2. If chlorine is known to be present, add one drop of 0.1 mol/l Sodium thiosulfate for each 0.3 mg/l Cl_x in a one liter (1000 mL) water sample.
- 3. Iron interferes with the test. The interferences will be eliminated as follows:

 Determine the amount of total iron present in the water sample. To produce the blank add an iron standard solution with the same iron concentration to the vial (point 1) instead of deionized water
- 4. Conversion: $mg/l NH_4 = mg/l N \times 1.29$ $mg/l NH_3 = mg/l N \times 1.22$
- 5. ▲ N

 NH₄

 NH₄


Ammonium HR with Vario Tube Test


 $1 - 50 \, \text{mg/l N}$

Insert the adapter for 16 mm Ø vials.

- Open one white capped reaction vial and add 0.1 ml deionized water (this is the blank).
- Open another white capped reaction vial and add 0.1 ml of the water sample (this is the sample).

5. Close the vials tightly with the caps and swirl several times to dissolve the powder.

Countdown 1 20:00 start: 🔟

Press [] key.
 Wait for a reaction period of 20 minutes.

After the reaction period is finished proceed as follows:

 Place the vial (the blank) in the sample chamber making sure that the marks are \(\frac{1}{2} \) aligned.

prepare Zero press ZERO

- 8. Press **ZERO** key.
- 9. Remove the vial from the sample chamber.
- 10. Place the vial (the sample) in the sample chamber making sure that the marks are $\frac{1}{3}$ aligned.

Zero accepted prepare Test press TEST

11. Press **TEST** key.

The result is shown in the display in mg/l Ammonium.

Notes:

- 1. Strong alkaline or acidic water samples must be adjusted to approx. pH 7 before analysis (use 1 mol/l Hydrochloric acid resp. 1 mol/l Sodium hydroxide).
- 2. If chlorine is known to be present, add one drop of 0.1 mol/l Sodium thiosulfate for each 0.3 mg/l Cl₂ in a one litre water sample.
- 3. Iron interferes with the test. The interferences will be eliminated as follows:

 Determine the amount of total iron present in the water sample. Add an iron standard solution with the same concentration to the vial (point 1) instead of deionized water to produce the blank.
- 4. Conversion: $mg/l NH_4 = mg/l N \times 1.29$ $mg/l NH_3 = mg/l N \times 1.22$
- 5. ▲ N

 NH₄

 NH₄

Boron with Tablet

 $0.1 - 2 \, \text{mg/l B}$

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one BORON No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod and dissolve the tablet.
- Add one BORON No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 20:00 9. Press TEST key.

Wait for a reaction period of 20 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Boron.

Notes:

- 1. The tablets must added in the correct sequence.
- 2. The sample solution should have a pH value between 6 and 7.
- 3. Interferences are prevented by the presence of EDTA in the tablets.
- 4. The rate of color development depends on the temperature. The temperature of the sample must be $20^{\circ}C \pm 1^{\circ}C$.
- 5. ▲ B ▼ H,BO,

Bromine with Tablet

0.05 - 13 mg/l Br.,

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet straight from the foil and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

The result is shown in the display in mg/l Bromine.

Notes:

1. Vial cleaning:

As many household cleaners (e.g. dishwasher detergent) contain reducing substances, the subsequent determination of Bromine may show lower results. To avoid any measurement errors, only use glassware free of Chlorine consumption.

Preparation: Put all applicable glassware into Sodium hypochlorite solution (0.1 g/l) for one hour, then rinse all glassware thoroughly with deionized water.

- 2. Preparing the sample:
 - When preparing the sample, the escape of Bromine gases, e.g. by pipetting or shaking, must be avoided. The analysis must take place immediately after taking the sample.
- 3. The DPD color development is carried out at a pH value of 6.3 to 6.5. The reagent tablet therefore contains a buffer for the pH adjustment. Strong alkaline or acidic water samples must be adjusted between pH 6 and pH 7 before the reagent is added (use 0.5 mol/l Sulfuric acid resp. 1 mol/l Sodium hydroxide).
- 4. Exceeding of the measuring range:

Concentrations above 22 mg/l Bromine can produce results within the measuring range up to 0 mg/l. In this event, the water sample must be diluted with water free of Bromine. 10 ml of the diluted sample will be mixed with the reagent and the measurement repeated.

Oxidizing agents such as Chlorine, Ozone etc. interfere as they react like Bromine.

Chloride with Tablet

0.5 - 25 mg/l Cl

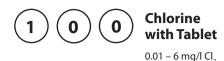
- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one CHLORIDE T1 tablet straight from the foil to the water sample, crush the tablet using a clean stirring rod and dissolve the tablet.
- Add one CHLORIDE T2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl gently several times until the tablet is dissolved (Note 1).

Zero accepted prepare Test press TEST

Countdown 2:00 9. Press **TEST** key.


Wait for a **reaction period of 2 minutes**.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Chloride.

Notes:

- 1. Ensure that all particles of the tablet are dissolved Chloride causes an extremely fine distributed turbidity with a milky appearance.
 - Heavy shaking leads to bigger sized particles which can cause false readings.
- 2. High concentrations of electrolytes and organic compounds have different effects on the precipitation reaction.
- 3. Ions which also form deposits with Silver nitrate in acidic media, such as Bromides, lodides and Thiocyanates, interfere with the analysis.
- 4. Highly alkaline water should if necessary be neutralized using Nitric acid before analysis.

1 0 1 Chlorine with Liquid Reagent

1 0 Chlorine with Powder Pack

0.02 - 2 mg/l Cl₂

Chlorine >> diff free total >> diff for tot

The following selection is shown in the display:

for the differentiated determination of free, combined and total Chlorine.

>> **free** for the determination of free Chlorine.

>> total for the determination of total Chlorine.

Select the desired determination with the arrow keys $[\blacktriangle]$ and $[\blacktriangledown]$. Confirm with $[_]$ key.

Notes:

1. Vial cleaning:

As many household cleaners (e.g. dishwasher detergent) contain reducing substances, the subsequent determination of Chlorine may show lower results. To avoid any measurement errors, only use glassware free of Chlorine consumption.

Preparation: Put all applicable glassware into Sodium hypochlorite solution (0.1 g/l) for one hour, then rinse all glassware thoroughly with deionized water.

- 2. For individual testing of free and total Chlorine, the use of different sets of glassware is recommend (EN ISO 7393-2, 5.3)
- 3. Preparing the sample:

When preparing the sample, the escape of Chlorine gases, e.g. by pipetting or shaking, must be avoided. The analysis must take place immediately after taking the sample.

4. The DPD color development is carried out at a pH value of 6.3 to 6.5. The reagents therefore contain a buffer for the pH adjustment.

Strong alkaline or acidic water samples must be adjusted between pH 6 and pH 7 before the reagent is added (use 0.5 mol/l Sulfuric acid resp. 1 mol/l Sodium hydroxide).

5. Exceeding of the measuring range:

Concentrations above

10 mg/l Chlorine using tablets

4 mg/l Chlorine using liquid reagents

2 mg/l using powder packs

can produce results within the measuring range up to 0 mg/l. In this event, the water sample must be diluted with water free of Chlorine. 10 ml of the diluted sample will be mixed with the reagent and the measurement repeated.

6. Turbidity (lead to errors):

The use of the DPD No. 1 tablet (method 100) in samples with high Calcium ion content* and/or high conductivity* can lead to turbidity of the sample and therefore incorrect measurements. In this event, the reagent tablet DPD No. 1 High Calcium should be used as an alternative. Even if the turbidity does occur after the DPD No. 3 tablet has been added, this can be prevented by using the DPD No. 1 HIGH CALCIUM

- * it is not possible to give exactly values, because the development of turbidity depends on nature and ingredients of the sample.
- 7. If ??? is displayed at a differentiated test result see page 242.

Oxidizing agents such as Bromine, Ozone etc. interfere as they react like Chlorine.

Chlorine, differentiated determination with Tablet

0.01 - 6 mg/l Cl₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- Press ZERO key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- 5. Add **one DPD No. 1 tablet** straight from the foil and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times until the tablet is dissolved
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare T1 press TEST

- 9. Press TEST key.
- 10. Remove the vial from the sample chamber.
- Add one DPD No. 3 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 12. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

13. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

T1 accepted prepare T2 press TEST

Countdown 2:00 14. Press **TEST** key. Wait for a **reaction period of 2 minutes**.

After the reaction period is finished the measurement starts automatically.

*,** mg/l free Cl *,** mg/l comb Cl *,** mg/l total Cl The result is shown in the display in: mg/l free Chlorine

mg/I combined Chlorine mg/I total Chlorine

Notes:

Chlorine, free with Tablet

0.01 – 6 mg/l Cl₃

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet straight from the foil and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press TEST key.

The result is shown in the display in mg/l free Chlorine.

Notes:

Chlorine, total with Tablet

0.01 - 6 mg/l Cl₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber and **empty it,** leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet and one DPD No. 3 tablet straight from the foil and crush the tablets using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00 Press TEST key.
 Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l total Chlorine.

Notes:

Chlorine, differentiated determination with Liquid Reagent

0.02 - 4 mg/l Cl₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty the vial.
- 5. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:

6 drops of DPD 1 buffer solution
2 drops of DPD 1 reagent solution

- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times to mix the contents.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare T1 press TEST

- 9. Press **TEST** key.
- 10. Remove the vial from the sample chamber.
- Add 3 drops of DPD 3 solution to the same water sample.
- 12. Close the vial tightly with the cap and swirl several times to mix the contents

13. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

T1 accepted prepare T2 press TEST

Countdown 2:00 14. Press **TEST** key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in:

*,** mg/l free Cl *,** mg/l comb. Cl *,** mg/l total Cl mg/l free Chlorine mg/l combined Chlorine mg/l total Chlorine

Notes:

- 1. After use replace the bottle caps securely noting the color coding.
- 2. Store the reagent bottles in a cool, dry place ideally between 6°C and 10°C.
- 3. Also see page 37.

Chlorine, free with Liquid Reagent

0.02 - 4 mg/l Cl₂

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- Remove the vial from the sample chamber and empty the vial.
- 5. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:

6 drops of DPD 1 buffer solution 2 drops of DPD 1 reagent solution

- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times to mix the contents.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

The result is shown in the display in mg/l free Chlorine.

Notes (free and total Chlorine):

- 1. After use replace the bottle caps securely noting the colour coding.
- 2. Store the reagent bottles in a cool, dry place ideally between 6°C and 10°C.
- 3. Also see page 37.

Chlorine, total with Liquid Reagent

0.02 - 4 mg/l Cl₃

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

 Remove the vial from the sample chamber and empty the vial

5. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:

6 drops of DPD 1 buffer solution

2 drops of DPD 1 reagent solution

3 drops of DPD 3 solution

- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times to mix the contents.
- 8. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00

Press TEST key.Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l total Chlorine.

Chlorine, differentiated determination with Powder Pack

0.02 - 2 mg/l Cl₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

4. Remove the vial from the sample chamber.

- Add the contents of one Chlorine FREE-DPD/ F10 Powder Pack straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 20 seconds).
- Place the vial in the sample chamber making sure that the
 √ marks are aligned.

Zero accepted prepare T1 press TEST

- 8. Press TEST kev.
- Remove the vial from the sample chamber, empty the vial, rinse vial and cap several times and then fill the vial with 10 ml of the water sample.
- Add the contents of one Chlorine TOTAL-DPD / F10 Powder Pack straight from the foil to the water sample.
- 11. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 20 seconds).

12. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

T1 accepted prepare T2 press TEST

Countdown 3:00 13. Press **TEST** key.

Wait for a reaction period of 3 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in:

*,** mg/l free Cl *,** mg/l comb. Cl *,** mg/l total Cl

mg/l free Chlorine mg/l combined Chlorine mg/l total Chlorine

Notes:

Chlorine, free with Powder Pack

0.02 - 2 mg/l Cl₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.

- Add the contents of one Chlorine FREE-DPD / F10 Powder Pack straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 20 seconds).

Zero accepted prepare Test press TEST

8. Press **TEST** key.

The result is shown in the display in mg/l free Chlorine.

Notes:

Chlorine, total with Powder Pack

0.02 - 2 mg/l Cl₃

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

4. Remove the vial from the sample chamber.

- Add the contents of one Chlorine TOTAL-DPD / F10 Powder Pack straight from the foil to the water sample.
- Close the vial tightly with the cap and swirl several times to mix the contents (approx. 20 seconds).
- Place the vial in the sample chamber making sure that the
 marks are aligned.

Zero accepted prepare Test press TEST

Countdown 3:00

8. Press **TEST** key. Wait for a **reaction period of 3 minutes**.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l total Chlorine.

Notes:

Chlorine dioxide with Tablet

0.05 - 11 mg/l CIO₂

Chlorine dioxide >> with Cl without Cl

The following selection is shown in the display:

>> with Cl

for the determination of Chlorine dioxide in the presence of Chlorine.

>> without Cl

for the determination of Chlorine dioxide in the absence of Chlorine.

Select the desired determination with the arrow keys $[\Delta]$ and $[\nabla]$. Confirm with [L] key.

Notes:

1. Vial cleaning:

As many household cleaners (e.g. dishwasher detergent) contain reducing substances, the subsequent determination of Chlorine dioxide may show lower results. To avoid any measurement errors, only use glassware free of Chlorine consumption.

Preparation: Put all applicable glassware into Sodium hypochlorite solution (0.1 g/l) for one hour, then rinse all glassware thoroughly with deionized water.

2. Preparing the sample:

When preparing the sample, the escape of Chlorine dioxide gases, e.g. by pipetting or shaking, must be avoided. The analysis must take place immediately after taking the sample.

- 3. The DPD color development is carried out at a pH value of 6.3 to 6.5. The reagent tablet therefore contains a buffer for the pH adjustment.
 - Strong alkaline or acidic water samples must be adjusted between pH 6 and pH 7 before the tablet is added (use 0.5 mol/l Sulfuric acid resp. 1 mol/l Sodium hydroxide).
- 4. Exceeding of the measuring range:

Concentrations above 19 mg/l Chlorine dioxide can produce results within the measuring range up to 0 mg/l. In this event, the water sample must be diluted with water free of Chlorine dioxide. 10 ml of the diluted sample will be mixed with the reagent and the measurement repeated.

5.If ??? is displayed at a differentiated test result see page 242.

Oxidizing agents such as Chlorine, Ozone etc. interfere as they react like Chlorine dioxide.

Chlorine dioxide in the presence of Chlorine with Tablet

0.05 - 11 mg/l CIO,

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- Place the vial in the sample chamber making sure that the
 \(\overline{\text{marks}} \) marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet straight from the foil and crush the tablet using a clean stirring rod.
- Fill a second clean vial with 10 ml of the water sample.
- Add one GLYCINE tablet straight from the foil and crush the tablet using a clean stirring rod.
- 8. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- Transfer the contents of the second vial into the prepared vial.
- 10. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 11. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.
- T 12. Press **TEST** key.

Zero accepted prepare T1 press TEST

- Remove the vial from the sample chamber, empty the vial, rinse vial and cap several times. Fill with a few drops of the water sample.
- 14. Add **one DPD No. 1 tablet** straight from the foil and crush the tablet using a clean stirring rod.
- 15. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 17. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

T1 accepted prepare T2 press TEST

- 18. Press **TEST** key.
- 19. Remove the vial from the sample chamber.
- Add one DPD No. 3 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 21. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 22. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

T2 accepted prepare T3 press TEST

23. Press **TEST** key.

Wait for a reaction period of 2 minutes.

Countdown 2:00

After the reaction period is finished the measurement starts automatically.

*,** mg/l ClO₂ [Cl]

The result is shown in the display in:

*,** mg/l ClO₃

as Chlorine dioxide in mg/l Chlorine, or

*,** mg/l free Cl *,** mg/l comb. Cl *,** mg/l total Cl as Chlorine dioxide in mg/I ClO₂.

mg/l free Chlorine mg/l combined Chlorine mg/l total Chlorine

Notes:

See next page.

Notes: (Chlorine dioxide in the presence of Chlorine)

1. The conversion factor to convert Chlorine dioxide as Chlorine to Chlorine dioxide as ${\rm ClO}_2$ is approximately 0.4 (more exactly 0.38).

 $mg/I CIO_{2} = mg/I CIO_{2} [CI] \times 0.38$

▼ CIO,

(Chlorine dioxide displayed as Chlorine units CIO₂ [CI] has its origin out of the swimming poolwater treatment according to DIN 19643.)

- 2. The total Chlorine result given includes the contribution by the Chlorine dioxide (as Chlorine) reading. For true total Chlorine value subtract the Chlorine dioxide (as Chlorine) reading from the quoted total Chlorine reading.
- 3. Also see page 51.

Chlorine dioxide in absence of Chlorine with Tablet

0.05 - 11 mg/l CIO₂

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the \sqrt{n} marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- 5. Add **one DPD No. 1 tablet** straight from the foil and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

*,** mg/l ClO₂ [Cl]

*,** mg/l ClO₂

The result is shown in the display

as Chlorine dioxide in mg/l Chlorine,

as Chlorine dioxide in mg/I CIO₃.

Notes:

See page 51.

Chlorine HR (KI) with Tablet

5 - 200 mg/l Cl₃

Insert the adapter for 16 mm Ø vials.

- Fill a clean vial (16 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the marks are \(\) aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one CHLORINE HR (KI) tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Add one ACIDIFYING GP tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- Place the vial in the sample chamber making sure that the marks are
 ∫ aligned.

Zero accepted prepare Test press TEST

9. Press TEST key.

The result is shown in the display in mg/l Chlorine.

Notes:

1. Oxidizing agents interfere as they react like Chlorine.

COD LR with Vario Tube Test

0 - 150 mg/l O₃

Insert the adapter for 16 mm Ø vials.

- Open one white capped reaction vial and add 2 ml deionized water (this is the blank (Note 1)).
- Open another white capped reaction vial and add 2 ml of the water sample (this is the sample).
- Close the vials with the cap tightly. Invert the vial gently several times to mix the contents.(CAUTION: The vial will become hot during mixing!)
- Heat the vials for 120 minutes in the preheated reactor at a temperature of 150°C.

5. (CAUTION: The vials are hot!)

Remove the tubes from the heating block and allow them to cool to 60°C or less. Mix the contents by carefully inverting each tube several times while still warm. Then allow the tubes to cool to ambient temperature before measuring. (Note 2).

prepare Zero press ZERO

- 7. Press **ZERO** key.
- 8. Remove the vial from the sample chamber.
- 9. Place the vial (the sample (Note 3, 4)) in the sample chamber making sure that the marks are $\frac{1}{\Lambda}$ aligned.

Zero accepted prepare Test press TEST

10. Press TEST key.

The result is shown in the display in mg/I COD.

Notes:

- 1. Run samples and blanks with the same batch of vials. The blank is stable when stored in the dark and can be used for further measurements with vials of the same batch.
- 2. Do not place the hot vials in the sample chamber. Cool the vials to room temperature for final measurements.
- Suspended solids in the vial lead to incorrect measurements. For this reason it is important to place the vials carefully in the sample chamber. The precipitate at the bottom of the sample should be not suspended.
- 4. Clean the outside of the vials with a towel to remove finger prints or other marks.
- 5. Samples can be measured when the Chloride contents does not exceed 1000 mg/l.
- 6. Be aware that low readings can result if the water contains compounds that cannot be oxidized completely, as compared to the reference method.

COD MR with Vario Tube Test

0 - 1500 mg/l O₃

Insert the adapter for 16 mm Ø vials.

- Open one white capped reaction vial and add 2 ml deionized water (this is the blank (Note 1)).
- Open another white capped reaction vial and add 2 ml of the water sample (this is the sample).
- Close the vials with the cap tightly. Invert the vial gently several times to mix the contents.

(CAUTION: The vial will become hot during mixing!)

 Heat the vials for 120 minutes in the preheated reactor at a temperature of 150°C.

5. (CAUTION: The vials are hot!)

Remove the tubes from the heating block and allow them to cool to 60°C or less. Mix the contents by carefully inverting each tube several times while still warm. Then allow the tubes to cool to ambient temperature before measuring. (Note 2).

 Place the vial (the blank (Note 3, 4)) in the sample chamber making sure that the marks are
 ¹ Aligned.

prepare Zero press ZERO

- 7. Press **ZERO** key.
- 8. Remove the vial from the sample chamber.
- 9. Place the vial (the sample (Note 3, 4)) in the sample chamber making sure that the marks are $\frac{1}{4}$ aligned.

Zero accepted prepare Test press TEST

10. Press TEST key.

The result is shown in the display in mg/I COD.

Notes:

- 1. Run samples and blanks with the same batch of vials. The blank is stable when stored in the dark and can be used for further measurements with vials of the same batch.
- 2. Do not place the hot vials in the sample chamber. Cool the vials to room temperature for final measurements.
- Suspended solids in the vial lead to incorrect measurements. For this reason it is important to place the vials carefully in the sample chamber. The precipitate at the bottom of the sample should be not suspended.
- 4. Clean the outside of the vials with a towel to remove finger prints or other marks.
- 5. Samples can be measured when the Chloride contents does not exceed 1000 mg/l.
- 6. Be aware that low readings can result if the water contains compounds that cannot be oxidized completely, as compared to the reference method.
- 7. For samples under 100 mg/l COD it is recommended to repeat the test with the tube test for COD LR.



COD HR with Vario Tube Test

 $0 - 15 \text{ g/l O}_{2} (\triangleq 0 - 15,000 \text{ mg/l O}_{2})$

Insert the adapter for 16 mm Ø vials.

- Open one white capped reaction vial and add 0.2 ml deionized water (this is the blank (Note 1)).
- Open another white capped reaction vial and add
 0.2 ml of the water sample (this is the sample).
- Close the vials with the cap tightly. Invert the vial gently several times to mix the contents.(CAUTION: The vial will become hot during mixing!)

4. Heat the vials for **120 minutes** in the preheated reactor

5. (CAUTION: The vials are hot!)

at a temperature of 150°C.

Remove the tubes from the heating block and allow them to cool to 60°C or less. Mix the contents by carefully inverting each tube several times while still warm. Then allow the tubes to cool to ambient temperature before measuring. (Note 2).

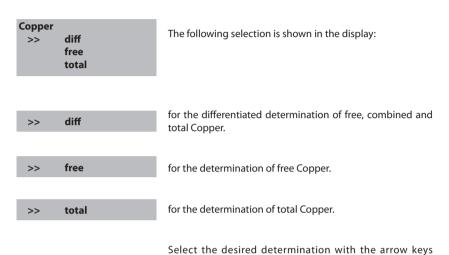
 Place the vial (the blank (Note 3, 4)) in the sample chamber making sure that the marks are
 ¹√ aligned.

prepare Zero press ZERO

- 7. Press **ZERO** key.
- 8. Remove the vial from the sample chamber.
- 9. Place the vial (the sample (Note 3, 4)) in the sample chamber making sure that the marks are λ aligned.

Zero accepted prepare Test press TEST

10. Press TEST key.


The result is shown in the display in **g/l** COD.

Notes:

- 1. Run samples and blanks with the same batch of vials. The blank is stable when stored in the dark and can be used for further measurements with vials of the same batch.
- 2. Do not place the hot vials in the sample chamber. Cool the vials to room temperature for final measurements.
- Suspended solids in the vial lead to incorrect measurements. For this reason it is important to place the vials carefully in the sample chamber. The precipitate at the bottom of the sample should be not suspended.
- 4. Clean the outside of the vials with a towel to remove finger prints or other marks.
- 5. Samples can be measured when the Chloride contents does not exceed 1000 mg/l.
- 6. Be aware that low readings can result if the water contains compounds that cannot be oxidized completely, as compared to the reference method.
- 7. For samples under 1 g/l COD it is recommended to repeat the test with the test kit for COD MR or for samples under 0,1 g/l COD with the tube test COD LR.

0.05 - 5 mg/l Cu

[▲] and [▼]. Confirm with [₄] key.

Note:

1. If ??? is displayed at the diffentiated test result see page 242.

Copper, differentiated determination with Tablet

0.05 - 5 mg/l Cu

Ø 24 mm

prepare Zero press ZERO

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.
- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one COPPER No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare T1 press TEST

- 8. Press **TEST** key.
- 9. Remove the vial from the sample chamber.
- Add one COPPER No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 11. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 12. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.
- 13. Press **TEST** key.

T1 accepted prepare T2 press TEST

*,** mg/l free Cu *,** mg/l comb Cu *,** mg/l total Cu The result is shown in the display in: mg/l free Copper mg/l combined Copper mg/l total Copper

Copper, free with Tablet

0.05 - 5 mg/l Cu

1. Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

- 4. Remove the vial from the sample chamber.
- 5. Add one COPPER No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display in mg/l free Copper.

Copper, total with Tablet

0.05 - 5 mg/l Cu

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one COPPER No. 1 tablet and one COPPER No. 2 tablet straight from the foil to the water sample and crush the tablets using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- Place the vial in the sample chamber making sure that the
 ∑ marks are aligned.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

The result is shown in the display in mg/l total Copper.

Copper, free (Note 1) with Powder Pack

0.05 - 5 mg/l Cu

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

- 4. Remove the vial from the sample chamber.
- Add the contents of one Cu 1 F10 Powder Pack straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (Note 3).
- 7. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00 8. Press **TEST** key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/I Copper

Notes:

- 1. For determination of Total Copper, a digestion is required.
- 2. Extremely acid water samples (pH 2 or less) must be adjusted between pH 4 and pH 6 before the reagent is added (with 8 mol/l Potassium hydroxide solution KOH).
- 3. Accuracy is not affected by undissolved powder.
- 4. Interferences:

Cyanide, CN	Cyanide prevents full color development. Add 0.2 ml Formaldehyde to 10 ml water sample and wait for a reaction time of 4 minutes (Cyanide is masked). After this perform test as described. Multiply the result by 1.02 to correct the sample dilution by Formaldehyde.
Silver, Ag ⁺	If a turbidity remains and turns black, silver interferences is likely. Add 10 drops of saturated Potassium chloride solution to 75 ml of water sample. Filtrate through a fine filter. Use 10 ml of the filtered water sample to perform test.

Cyanide with Reagent Test

0.01 - 0.5 mg/I CN

- Fill a clean vial (24 mm Ø) with 2 ml of the water sample and 8 ml of deionized water, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add two level spoons No. 4 (grey) of Cyanide-11 into the prepared water sample, replace the cap tightly and invert the vial several times to mix the contents.
- Add two level spoons No. 4 (grey) of Cyanide-12, replace the cap tightly and invert the vial several times to mix the contents.
- 7. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:
 - 3 drops of Cyanide-13
- 8. Close the vial tightly with the cap and invert several times to mix the contents
- 9. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00 10. Press TEST key.

Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Cyanide.

- 1. Only free Cyanide and Cyanides that can be destroyed by Chlorine are determined by this test.
- 2. In the present of Thiocyanate, heavy metal complexes, colorants or aromatic amines, the cyanide must be separated out by distillation before analysis is performed.
- 3. Store the reagents in closed containers at a temperature of $+ 15^{\circ}$ C to $+ 25^{\circ}$ C.

Cyanuric acid with Tablet

2 - 160 mg/l Cys

Ø 24 mm

- Fill a clean vial (24 mm Ø) with 5 ml of the water sample and 5 ml deionized water (Note 1), close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one CYANURIC ACID tablet straight from the foil to the prepared water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved (Note 2, 3).
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display in mg/l Cyanuric acid.

- 1. Use deionized water or tap water free of Cyanuric acid.
- 2. If Cyanuric acid is present a cloudy solution will result.
- 3. Dissolve the tablet completely (therefore swirl the vial approx. 1 minute). Undissolved particles of the tablet can cause too high results.

DEHA (N,N-Diethylhydroxylamine) with Tablet and Liquid Reagent

20 - 500 μg/l DEHA / 0.02 - 0.5 mg/l DEHA

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap (Note 2).

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

- 4. Remove the vial from the sample chamber.
- Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:

6 drops (0.25ml) of DEHA solution

- Close the vial tightly with the cap and swirl several times to mix the contents.
- Add one DEHA tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 8. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 9. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00 10. Press TEST key.

Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display as DEHA.

Notes:

- Application: Testing of residual corrosion inhibitors (Oxygen scavengers) in boiler feed water or condensate.
- Before using clean the vials with Hydrochloric acid (approx. 20%). Rinse thoroughly with deionized water.
- 3. Keep the sample dark during color development time. UV-light (sunlight) causes high measurement results.
- 4. Ideal temperature for full color development is $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$.
- 5. Interferences:
 - Iron (II) interferes at all concentrations:
 Repeat the test procedure but without adding the DEHA solution. If the displayed result is above 20 µg/l subtract this value from the DEHA test result.
 - Substances which reduce Iron (III) or complex iron may interfere.
 - Substances which may interfere when present in concentrations at:

Borate (as Na ₂ B ₄ O ₇)	500 mg/l
Cobalt	0.025 mg/l
Copper	8.0 mg/l
Hardness (as CaCO ₃)	1000 mg/l
Lignosulfonates	0.05 mg/l
Manganese	0.8 mg/l
Molybdenum	80 mg/l
Nickel	0.8 mg/l
Phosphate	10 mg/l
Phosphonates	10 mg/l
Sulfate	1000 mg/l
Zinc	50 mg/l

6. There is an option to change the unit from mg/l to μ g/l.

The unit mg/l is rounded, e.g.: 25 μ g/l = 0.025 mg/l \rightarrow display 0.03 mg/l.

V μg/l

DEHA (N,N-Diethylhydroxylamine) with Powder Pack and Liquid Reagent

20 - 500 μg/l DEHA / 0.02 - 0.5 mg/l DEHA

Use two clean vials (24 mm \emptyset) and mark one as blank for zeroing (Note 2).

- Fill a clean vial with 10 ml deionized water (this is the blank).
- Fill the second clean vial with 10 ml of the water sample (this is the sample).

- Add the contents of one OXYSCAV 1 Rgt Powder Pack straight from the foil into each vial.
- Close the vials tightly with the caps and swirl several times to mix the contents
- Add 0.20 ml DEHA 2 Rgt Solution to each vial (Note 4).
- Close the vials tightly with the caps and swirl several times to mix the contents.

Countdown 1 10:00 start: _

7. Press [] key.

Wait for a reaction **period of 10 minutes** (Note 5).

After the reaction period is finished proceed as follows:

prepare Zero press ZERO

- 9. Press **ZERO** key.
- 10. Remove the vial from the sample chamber.
- 11. Place the vial (the sample) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

12. Press **TEST** key.

The result is shown in the display as DEHA.

Notes:

- 1. Application: Testing of residual corrosion inhibitors (Oxygen scavengers) in boiler feed water or condensate.
- Before using clean the vials with Hydrochloric acid (approx. 20%). Rinse thoroughly with deionized water.
- 3. Ideally temperature for full color development is 25° C \pm 3 $^{\circ}$ C.
- 4. Volume should always be metered by using suitable pipette (class A).
- 5. Keep blank and sample dark during color development time. UV-light (sunlight) causes too high measurement results.
- 6. Interferences:
 - Iron (II) interferes at all concentrations:
 Repeat the test procedure but without adding the DEHA Rgt 2 solution. If the displayed result is above 20 μg/l subtract this value from the DEHA test result.
 - Substances which reduce Iron (III) interfere. Substances which complex iron strongly
 may interfere also.
 - Substances who may interfere when present in concentrations at:

Borate (as Na ₂ B ₄ O ₇)	500 mg/l
Cobalt	0.025 mg/l
Copper	8.0 mg/l
Hardness (as CaCO ₃)	1000 mg/l
Lignosulfonates	0.05 mg/l
Manganese	0.8 mg/l
Molybdenum	80 mg/l
Nickel	0.8 mg/l
Phosphate	10 mg/l
Phosphonates	10 mg/l
Sulfate	1000 mg/l
Zinc	50 mg/l

There is an option to change the unit from mg/l to μg/l.
 The unit mg/l is rounded, e.g.: 25 μg/l = 0.025 mg/l → display 0.03 mg/l.

Fluoride with Liquid Reagent

 $0.05 - 2 \,\text{mg/l}\,\text{F}$

Regard notes!

- Fill a clean vial (24 mm Ø) with exactly 10 ml of water sample (Note 4), close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- 5. Add **exactly 2 ml SPADNS reagent solution** (Note 4) to the water sample.

Caution: Vial is filled up to the top! (Note 8)

Close the vial tightly with the cap and swirl several times to mix the contents.

Zero accepted prepare Test press TEST

Press **TEST** key.

The result is shown in the display in mg/l Fluoride.

- The same batch of SPADNS reagent solution must be used for adjustment and test.
 The adjustment process needs to be performed for each new batch of SPADNS reagent solution (see Standard Methods 20th, 1998, APHA, AWWA, WEF 4500 F D., S. 4-82).

 The procedure is described in chapter 2.4.5 "Calibration" Mode 40" on page 215.
- 2. During adjustment and test the same vial should be used for zeroing and test, as different vials may exhibit minor tolerances.
- 3. The calibration solution and the water samples to be tested should have the same temperature (\pm 1°C).
- 4. As the test result is highly dependent on exact sample and reagent volumes, the sample and reagent volumes should always be metered by using a 10 ml resp. 2 ml volumetric pipette (class A).
- 5. The accuracy of the test methods decreases above a level of 1.2 mg/l Fluoride. Although the results are sufficiently accurate for most applications, even more exact results can be achieved by 1:1 dilution of the sample prior to use and subsequent multiplication of the result by 2.
- SPADNS reagent solution contains Arsenite.
 Chlorine concentrations up to 5 mg/l do not interfere.
- 7. Seawater and wastewater samples must be distilled.
- 8. It is convenient to use larger volume vials for this test.

Hardness, Calcium with tablet reagent

50 - 900 mg/l CaCO,

Ø 24 mm

- 1. Fill a clean vial (24 mm Ø) with 10 ml deionized water.
- Add one CALCHECK tablet straight from the foil to the deionized water and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 4. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

Countdown 2:00

5. Press ZERO key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

- 6. Remove the vial from the sample chamber.
- Add 2 ml of the water sample to the prepared vial.
 Caution: Vial is filled up to the top! (Note 4)
- 8. Close the vial tightly with the cap and swirl several times (5x) to mix the contents.
- 9. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

10. Press TEST key.

The result is shown in the display as Calcium Hardness.

- 1. Strong alkaline or acidic water samples must be adjusted between pH 4 and pH 10 before the tablet is added (use 1 mol/l Hydrochloric acid resp. 1mol/l Sodium hydroxide).
- 2. The tolerance of the method is increased with higher concentrations. When diluting samples, this should be taken into account, always measuring in the first third of the range.
- 3. This method was developed from a volumetric procedure for the determination of calcium. Due to undefined conditions, the deviations from the standardized method may be greater.
- 4. It is convenient to use larger volume vials for this test.
- 5. A CaCO₃
 °dH
 °eH
 °fH
 ••aH

Hardness, total with tablet reagent

2 - 50 mg/l CaCO,

1. Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- 5. Add one HARDCHECK P tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 5:00

8. Press TEST key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display as total Hardness.

Notes:

- 1. Strong alkaline or acidic water samples must be adjusted between pH 4 and pH 10 before the tablet is added (use 1 mol/l Hydrochloric acid resp. 1mol/l Sodium hydroxide).
- 2. Conversion table:

	mg/I CaCO ₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0.056	0.10	0.07
1 °dH	17.8		1.78	1.25
1 °fH	10.0	0.56		0.70
1 °eH	14.3	0.80	1.43	

3. ▲ CaCO₃ °dH

°еН

°fH

▼ °aH

Hardness, total HR with Tablet

20 - 500 mg/l CaCO,

Ø 24 mm

- Fill a clean vial (24 mm Ø) with 1 ml of the water sample and 9 ml of deionized water, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one HARDCHECK P tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Zero accepted prepare Test press TEST

Countdown 5:00

8. Press **TEST** key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display as total Hardness.

Notes:

- 1. Strong alkaline or acidic water samples must be adjusted between pH 4 and pH 10 before the tablet is added (use 1 mol/l Hydrochloric acid resp. 1 mol/l Sodium hydroxide).
- 2. Conversion table:

	mg/I CaCO ₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0.056	0.10	0.07
1 °dH	17.8		1.78	1.25
1 °fH	10.0	0.56		0.70
1 °eH	14.3	0.80	1.43	

3. **A** CaCO₃ °dH

°еН °fH

▼ °aH

Hydrazine with powder reagent

 $0.05 - 0.5 \text{ mg/l N}_3\text{H}_4 / 50 - 500 \text{ }\mu\text{g/l N}_3\text{H}_4$

1. Fill a clean vial (24 mm Ø) with **10 ml of the water** sample (Note 1, 2), close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

4. Remove the vial from the sample chamber.

Add 1 g HYDRAZINE test powder (Note 3) to the water sample.

6. Close the vial tightly with the cap and swirl several times to mix the contents

Countdown 10:00 start: _

7. Press [₄] key.

Wait for a reaction period of 10 minutes.

After the reaction period is finished proceed as follows:

8. The slight turbidity that occurs when the reagent is added must be removed by filtration (Note 4).

9. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

10. Press TEST key.

The result is shown in the display as Hydrazine.

- 1. If the water sample is cloudy, it should be filtered it before performing the zero calibration.
- 2. The temperature of the water sample should not exceed 21°C.
- 3. Using the Hydrazine spoon: 1 g is equivalent to one level spoon.
- 4. Qualitative folded filter papers for medium precipitates are recommended.
- 5. In order to check whether the reagent has aged (if it has been stored for a lengthy period), perform the test as described above using tap water. If the result is above the detection limit of 0.05 mg/l, you should use new reagents, as it could result in major result deviations.
- 6. There is an option to change the unit from mg/l to μ g/l. The unit mg/l is rounded, e.g.: 25 μ g/l = 0.025 mg/l \rightarrow display 0.03 mg/l.

Hydrazine with Liquid Reagent

 $0.01 - 0.6 \text{ mg/l N}_2 H_4 / 5 - 600 \mu\text{g/l N}_2 H_4$

Ø 24 mm

Use two clean vials (24 mm \emptyset) and mark one as blank for zeroing.

- Fill a clean vial with 10 ml deionized water (this is the blank).
- 2. Add 1 ml Hydra 2 Rgt Solution into the vial (Note 3).
- Close the vial tightly with the cap and swirl several times to mix the contents.
- 4. Place the vial (the blank) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- Press ZERO key.
- 6. Remove the vial from the sample chamber.
- Fill the second clean vial with 10 ml of the water sample (this is the sample).
- 8. Add 1 ml Hydra 2 Rgt Solution into the vial.
- Close the vial tightly with the cap and swirl several times to mix the contents.
- 10. Place the vial (the blank) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 12:00 11. Press **TEST** key.

Wait for a reaction period of 12 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display as Hydrazine.

Notes:

- 1. Samples cannot be preserved and must be analyzed immediately.
- 2. Sample temperature should be 21° C \pm 4 $^{\circ}$ C.
- 3. Caused by the reagent itself the blank may develop a faint yellow color.
- 4. Interferences:
 - Ammonium causes no interferences up to 10 mg/l.
 At a concentration of 20 mg/l it is possible, that the test result increase up to 20%.
 - · Morpholine does not interfere up to 10 mg/l.
 - · Highly colored or turbid samples:

Mix 1 part deionized water with 1 part household bleach. Add 1 drop of this mixture into 25 ml water sample and mix. Use 10 ml prepared sample in place of deionized water in point 1.

Note: at point 7 use the unprepared water sample.

Principle: Hydrazine is oxidized by the household bleach. The interference by color will be eliminated by zeroing.

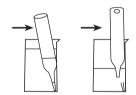
5. There is an option to change the unit from mg/L to μ g/L.

The unit mg/L is rounded, e.g.: 25 μ g/L = 0.025 mg/L \rightarrow display 0.03 mg/L.

Hydrazine with Vacu-vials K-5003 (see Notes)

 $0.01 - 0.7 \text{ mg/l N}_3 H_4 / 10 - 700 \mu\text{g/l N}_3 H_4$

Insert the adapter for 13 mm Ø vials.


 Place the blank in the sample chamber. The blank is part of the test kit.

prepare Zero press ZERO

- 3. Remove the blank from the sample chamber.
- 4. Fill the sample container to the 25 ml mark with the water sample.

- Place one Vacu-vial* in the sample container. Snap the tip by pressing the vial against the side of the sample container. The Vacu-vial* breaks at the neck and the vial fills automatically. A small volume of inert gas remains in the Vacu-vial*.
- Mix the contents of the Vacu-vial by inverting it several times, allowing the bubble to move from one end to the other. Dry the outside of the vial.
- 7. Place the Vacu-vial[®] in the sample chamber.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

Countdown 10:00 Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display as Hydrazine.

- 1. This method is adapted from CHEMetrics.
- 2. Read the original test instruction and the MSDS (delivered with the test) before performing the test. MSDS is also available at www.chemetrics.com.
- 3. $Vacu-vials^{\circ}$ is a registered trade mark of the company CHEMetrics, Inc. / Calverton, VA. U.S.A.
- There is an option to change the unit from mg/l to μg/l.
 The unit mg/l is rounded, e.q.: 25 μg/l = 0.025 mg/l → display 0.03 mg/l.

Hydrogen peroxide with tablet reagent

0.03 - 3 mg/l H₂O₂

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one HYDROGENPEROXIDE LR tablet straight from the foil and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- 7. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

Countdown 2:00

Wait for a **reaction period of 2 minutes**.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Hydrogen peroxide.

Notes:

1. Vial cleaning:

As many household cleaners (e.g. dishwasher detergent) contain reducing substances, the subsequent determination of Hydrogen peroxide may show lower results. To avoid any measurement errors, only use glassware free of Chlorine consumption.

Preparation: Put all applicable glassware into Sodium hypochlorite solution (0.1 g/l) for one hour, then rinse all glassware thoroughly with deionized water.

2. Preparing the sample:

When preparing the sample, the escape of Hydrogen peroxide gases, e.g. by pipetting or shaking, must be avoided. The analysis must take place immediately after taking the sample.

- 3. The DPD color development is carried out at a pH value of 6.3 to 6.5. The reagent tablet therefore contains a buffer for the pH adjustment.
 - Strong alkaline or acidic water samples must be adjusted between pH 6 and pH 7 before the tablet is added (use 0.5 mol/I Sulfuric acid resp. 1 mol/I Sodium hydroxide).
- 4. Exceeding of the measuring range:

Concentrations above 5 mg/l Hydrogen peroxide can produce results within the measuring range up to 10 mg/l. In this event, the water sample must be diluted with water free of Hydrogen peroxide. 10 ml of the diluted sample will be mixed with the reagent and the measurement repeated.

Oxidizing agents such as Chlorine, Ozone etc. interfere as they react like Hydrogen peroxide.

lodine with Tablet

0.05 - 3.6 mg/l I

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

- Remove the vial from the sample chamber, empty the vial leaving a view drops in.
- Add one DPD No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

The result is shown in the display in mg/l lodine.

Notes:

1. Oxidizing reagents, such as Chlorine, Bromine, etc. interfere as they react like lodine.

Iron with Tablet

0.02 – 1 mg/l Fe

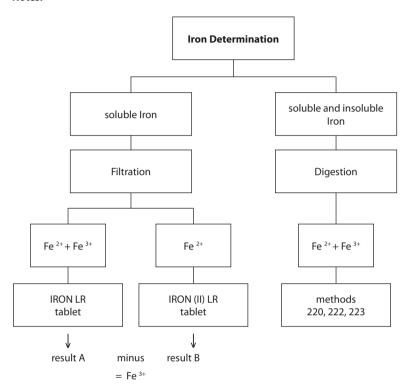
*Determination of total dissolved Iron Fe²⁺ and Fe³⁺

Iron with Powder Pack

0.02 - 3 mg/l Fe

*Determination of all soluble iron and most insoluble forms of iron

Iron, total with Powder Pack


0.02 - 1.8 mg/l Fe

*Determination of all soluble iron and most insoluble forms of iron; most insoluble iron oxides are recovered by the reagent.

*This information refers to analysis of the water sample without digestion.

Further information is found in the method notes.

Notes:

Digestion procedure for the determination of total soluble and insoluble iron.

- 1. Add 1 ml of concentrated sulfuric acid to 100 ml water sample. Heat and boil for 10 minutes or until all particles are dissolved. After cooling down the sample is set to a pH-value of 3 to 6 by using ammonia solution. Refill with deionised water to the previous volume of 100 ml and mix well. 10 ml of this pre-treated solution is used for the following analysis. Perform as described at the selected test method.
- 2. Water which has been treated with organic compounds like corrosion inhibitors must be oxidized where necessary to break down the iron. Therefore add 1 ml concentrated sulfuric acid and 1 ml concentrated nitric acid to 100 ml water sample and boil to approx. half volume. After cooling down proceed as described above.

Iron (Note 1) with Tablet

0.02 - 1 mg/l Fe

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one IRON LR tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 5:00

Press TEST key.
 Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Iron.

- 1. This method determines the total dissolved Iron as Fe^{2+} and Fe^{3+} .
- 2. The IRON (II) LR tablet is used for differentiation as described above instead of the IRON LR tablet.
- 3. For the determination of total dissolved and undissolved iron, a digestion is required. An example is described on page 97.

Iron (Note 1) with Powder Pack

0.02 - 3 mg/l Fe

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the marks $\overline{\chi}$ are aligned.

prepare Zero press ZERO

3. Press **ZERO** key.

4. Remove the vial from the sample chamber.

- Add the contents of one Ferro F10 Powder Pack straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (Note 4).

Zero accepted prepare Test press TEST

Countdown 3:00 8. Press TEST key.

Wait for a reaction period of 3 minutes (Note 5).

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Iron.

- 1. The reagent reacts with all soluble iron and most insoluble forms of iron in the water sample.
- 2. Iron oxide requires a prior digestion, use mild, vigorous or Digesdahl digestion (e.g. for digestion with acid see page 97).
- 3. Very strong alkaline or acidic water samples must be adjusted to a ph-Value between 3 and 5 before analysis.
- 4. Accuracy is not affected by undissolved powder.
- 5. Water samples containing visible rust should be allowed to react at least five minutes.

Iron, total (TPTZ, Note 1) with Powder Pack

 $0.02 - 1.8 \,\text{mg/l}$ Fe

Ø 24 mm

Use two clean vials (24 mm \emptyset) and mark one as blank for zeroing.

 Fill a clean vial with 10 ml deionized water (this is the blank).

- Fill the second clean vial with 10 ml of the water sample (this is the sample).
- Add the contents of one IRON TPTZ F10 Powder Pack straight from the foil into each vial.
- 4. Close the vials tightly with the caps and swirl several times to mix the contents.

Countdown 3:00 start: _|

5. Press [] key.

Wait for a reaction period of 3 minutes.

After the reaction period is finished proceed as follows:

6. Place the vial (the blank) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 7. Press **ZERO** key.
- 8. Remove the vial from the sample chamber.
- 9. Place the vial (the sample) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

10. Press **TEST** key.

The result is shown in the display in mg/l Iron.

Notes:

- For determination of total Iron digestion is required.
 TPTZ reagent recovers most insoluble iron oxides without digestion.
- 2. Rinse all glassware with 1:1 Hydrochloric acid solution first and then rinse with deionized water to remove iron deposits that can cause slightly high results.
- 3. Strong alkaline or acidic water samples must be adjusted between pH 3 and pH 8 before the reagent is added (use 0.5 mol/l Sulfuric acid resp. 1 mol/l Sodium hydroxide).
- 4. Interferences:

When interferences occurred, the color development was inhibited or a precipitate was formed.

The values below refer to a standard with an iron concentration of 0.5 mg/l.

The following substances do not interfere when present up to the levels given:

Substance	no inerference to
Cadmium	4.0 mg/l
Chromium ⁽³⁺⁾	0.25 mg/l
Chromium (6+)	1.2 mg/l
Cobalt	0.05 mg/l
Copper	0.6 mg/l
Cyanide	2.8 mg/l
Manganese	50 mg/l
Mercury	0.4 mg/l
Molybdenum	4.0 mg/l
Nickel	1.0 mg/l
Nitrite Ion	0.8 mg/l

Manganese with Tablet

0.2 – 4 mg/l Mn

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press ZERO key.

- 4. Remove the vial from the sample chamber.
- Add one MANGANESE LR 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod and dissolve the tablet.
- Add one MANGANESE LR 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

Wait for a reaction period of 5 minutes.

Countdown 5:00

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Manganese.

Note:

1. **A** Mn

MnO₄

▼ KMnO₄

Manganese LR with Powder Pack

0.01 – 0.7 mg/l Mn

Ø 24 mm

Use two clean vials (24 mm Ø) and mark one as blank for zeroina (Note 1).

- 1. Fill a clean vial with 10 ml of deionized water (this is the blank)
- 2. Fill the second clean vial with 10 ml of the water sample (this is the sample).
- 3. Add the contents of one Ascorbic Acid Powder **Pack** straight from the foil into each vial. (Note 2)
- 4. Close the vials tightly with the caps and swirl several times to mix the contents.
- 5. Fill each vial with drops of the same size by holding the bottle vertically and squeeze slowly (Note 3): 15 drops of Alkaline Cyanide reagent solution
- 6. Close the vials tightly with the caps and swirl several times to mix the contents.
- 7. Fill each vial with drops of the same size by holding the bottle vertically and squeeze slowly: 21 drops of PAN Indicator solution
- 8. Close the vials tightly with the caps and swirl several times to mix the contents.

Countdown 1 2:00 start: 🚽

 Press [] key. Wait for a reaction period of 2 minutes (Note 4).

After the reaction period is finished proceed as follows:

9. Place the vial (the blank) in the sample chamber making sure that the marks are $\overline{\chi}$ aligned.

press ZERO

- 10. Press **ZERO** key.
- 11. Remove the vial from the sample chamber.
- 12. Place the vial (the sample) in the sample chamber making sure that the marks are $\overline{\chi}$ aligned.
- 13. Press **TEST** key.

The result is shown in the display in mg/l Manganese.

prepare Zero

Zero accepted prepare Test press TEST

Notes:

- 1. Rinse all glassware with 1:1 Nitric acid solution first and then rinse with deionized water.
- Water samples that contain more than 300 mg/l CaCO₃ hardness: After adding the Ascorbic Acid powder pack add additionally 10 drops of Rochelle Salt Solution.
- 3. After addition of the reagent solution "Alkaline-Cyanide" a cloudy or turbid solution may form in some water samples. The turbidity should disappear after point 7.
- 4. Water samples containing more than 5 mg/l iron should be allowed to react at least 10 minutes.
- 5. Conversion: $mg/l MnO_4 = mg/l Mn \times 2.17$
- 6. ▲ Mn

 MnO₄

 ▼ KMnO₄

Manganese HR with Powder Pack

0.1 - 18 mg/l Mn

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.

- Add the contents of one Citrate Powder Pack straight from the foil to the water sample.
- Close the vial tightly with the cap and swirl several times to mix the contents.
- Add the contents of one Sodium Periodate Powder Pack straight from the foil to the same water sample.
- 8. Close the vial tightly with the cap and swirl several times to mix the contents.
- 9. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned

Zero accepted prepare Test press TEST

10. Press TEST key.

Wait for a reaction period of 2 minutes.

Countdown 2:00

·

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Manganese.

Notes:

- 1. This test is applicable for the determination of soluble Manganese in water and wastewater.
- Highly buffered or water sample with extreme pH-values may exceed the buffering capacity of the reagents and requires sample pre-treatment.
 If samples were acidified for storing, adjust the pH between 4 and 5 with 5 mol/l (5 N)
 Sodium hydroxide before test. Do not exceed pH 5, as manganese may precipitate.
- 3. Interferences:

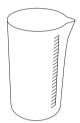
Interfering substance	Interference level
Calcium	greater than 700 mg/l
Chloride	greater than 70 000 mg/l
Iron	greater than 5 mg/l
Magnesium	greater than 100 000 mg/l

4. Mn MnO₄

▼ KMnO₄

Molybdate with Tablet

1 - 50 mg/l MoO₄ / 0.6 - 30 mg/l Mo



- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- Remove the vial from the sample chamber and empty the vial
- 5. Fill 20 ml of the water sample in a 100 ml beaker.
- 6. Add one MOLYBDATE HR No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 7. Add one MOLYBDATE HR No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 8. Dissolve the tablets using a clean stirring rod.
- 9. Rinse out the vial with the prepared water sample and then fill to the 10 ml mark.
- 10. Close the vial tightly with the cap.
- 11. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

12. Press **TEST** key.

The result is shown in the display in mg/l Molybdate / Molybdenum.

Notes:

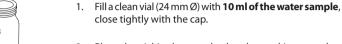
- 1. The tablets must be added in the correct sequence.
- 2. Under test conditions (pH 3.8 3.9) iron does not interfere nor do other metals at levels likely to be found in industrial water systems.
- 3. Conversions:

```
mg/I Mo = mg/I MoO_4 \times 0.6

mg/I Na_3 MoO_6 = mg/I MoO_4 \times 1.3
```

4. ▲ MoO₄ Mo

▼ Na₂MoO₄


Molybdate / Molybdenum HR with Powder Pack

0.5 - 66 mg/l MoO₄ / 0.3 - 40 mg/l Mo

Ø 24 mm

prepare Zero press ZERO

- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.
- Press **ZERO** key.
- Remove the vial from the sample chamber.

- 5. Add the contents of one Molybdenum HR 1 F10 Powder **Pack** straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents.
- 7. Add the contents of **one Molybdenum HR 2 F10 Powder** Pack straight from the foil to the same water sample.
- 8. Close the vial tightly with the cap and swirl several times to mix the contents.
- 9. Add the contents of **one Molybdenum HR 3 F10 Powder Pack** straight from the foil to the same water sample.
- 10. Close the vial tightly with the cap and swirl several times to mix the contents.
- 11. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

After the reaction period is finished the measurement

12. Press TEST key.

starts automatically.

Wait for a reaction period of 5 minutes.

Zero accepted prepare Test press TEST

The result is shown in the display in mg/l Molybdate / Molybdenum.

Countdown 5:00

Notes:

- 1. Filter turbid water samples using filter paper and funnel before analysis.
- 2. Highly buffered water samples or extreme pH values should be adjusted to a pH of nearly 7 with 1 mol/l Nitric acid or 1 mol/l Sodium hydroxide.
- 3. Concentration from 10 mg/l Copper will result in artificially high test values if the described reaction time of 5 minutes is increased. Thus, it is very important to perform the test procedure continuously.
- 4. Substances below may interfere when when present in concentrations above these limits:

Aluminium	50 mg/l
Chromium	1000 mg/l
Iron	50 mg/l
Nickel	50 mg/l
Nitrite	all levels

5. ▲ MoO₄
Mo
Na,MoO₄

Nitrate with Tube Test

 $1 - 30 \, \text{mg/l N}$

Insert the adapter for 16 mm Ø vials.

- Open one white capped vial (Reagent A) and add 1 ml deionized water (this is the blank).
- Open another white capped vial (Reagent A) and add
 1 ml of the water sample (this is the sample).
- Add the contents of one Nitrate Chromotropic Powder Pack straight from the foil into each vial.
- Close the vials tightly with the caps and invert gently several times (10 x) to mix the contents (Note 1).

Countdown 5:00

start: 🔟

Press [₄] key.

Wait for a reaction period of 5 minutes.

- 6. After the reaction period is finished proceed as follows:

prepare Zero press ZERO

- 8. Press **ZERO** key.
- 9. Remove the vial from the sample chamber.
- 10. Place the vial (the sample) in the sample chamber making sure that the marks are $\frac{1}{3}$ aligned.

Zero accepted prepare Test press TEST

11. Press **TEST** key.

The result is shown in the display in mg/l Nitrate.

Notes:

- 1. Some solids may not dissolve.
- 2. Conversion: mg/I NO₃ = mg/I N x 4.43
- 3. ▲ N NO,

Nitrite with Tablet

0.01 - 0.5 mg/l N

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the marks $\sqrt{}$ are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one NITRITE LR tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- Place the vial in the sample chamber making sure that the marks \(\frac{1}{2} \) are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00 Press TEST key.
 Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Nitrite.

Notes:

1. The following ions can produce interferences since under the reaction conditions they cause precipitation:

Antimony (III), Iron (III), Lead, Mercury (I), Silver, Chloroplatinate, Metavanadate and Bismuth.

Copper (II)-ions may cause lower test results as they accelerate the decomposition of the Diazonium salt.

It is improbable that theses interfering ions will occur in such high concentrations that they cause significant reading errors.

2. Conversion:

 $mg/I NO_3 = mg/I N \times 3.29$

3. A N

▼ NO₂

Nitrite LR with Powder Pack

0.01 - 0.3 mg/l N

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 4. Remove the vial from the sample chamber.
- Add the contents of one Nitrite 3 Powder Pack straight from the foil to the water sample.
- Close the vial tightly with the cap and swirl several times to mix the contents.
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

Countdown 20:00

Wait for a reaction period of 20 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Nitrite.

Notes:

- 1. Interferences:
 - Strong oxidizing and reducing substances interfere.
 - Presence of cupric and ferrous ions can cause low results.
 - Antimonous, Auric, Bismuth, Chloroplatinate, Ferric, Lead, Mercurous, Metavanadate, Silver ions can also interfere by causing precipitation.
 - In samples with very high concentrations of Nitrate (> 100 mg/L N) a small amount of Nitrite will be found. Such high levels of Nitrate appear to undergo a slight amount of reduction to Nitrite, either spontaneously or during the reaction time of the test.
- 2. ▲ N ▼ NO.

Nitrogen, total LR with Tube Test

 $0.5 - 25 \,\text{mg/l}\,\text{N}$

Ø 16 mm

Countdown 3:00

start: 🔟

Countdown 2:00 start: 🔟

Insert the adapter for 16 mm Ø vials.

- Open two TN Hydroxide LR digestion vials and add the contents of one Vario TN Persulfate Rgt. Powder **Pack** (Note 2, 3).
- 2. Add 2 ml deionized water to the prepared vial (this is the blank, Note 4, 5).
- 3. Add **2 ml of the water sample** to the other prepared vial (this is the sample).
- 4. Close the vials with the caps and shake to mix the contents (at least 30 seconds, Note 6).
- 5. Heat the vials for **30 minutes** in the preheated reactor at a temperature of 100°C (Note 7).
- 6. After 30 minutes remove the vials from the reactor. (CAUTION: The vials are hot!) Allow the vials to cool to room temperature.
- 7. Open the cooled digestion vials and add the contents of **one** TN Reagent A Powder Pack to each vial (Note 2).
- 8. Close the vials with the caps and shake to mix the contents (at least 15 seconds).
- 9. Press [] key. Wait for a reaction period of 3 minutes.

After the reaction period is finished proceed as follows:

- 10. Open the digestion vials and add the contents of one TN Reagent B Powder Pack to each vial (Note 2).
- 11. Close the vials with the caps and shake to mix the contents (at least 15 seconds, Note 8).
- 12. Press [∠] kev.

Wait for a reaction period of 2 minutes.

After the reaction period is finished proceed as follows:

- 13. Open two TN Acid LR/HR (Reagent C) vials and add 2 ml of the digested, treated blank to one vial (this is the blank).
- 14. Add 2 ml of the digested, treated water sample to the other TN Acid LR/HR vial (this is the sample).
- 15. Close the vials with the caps and swirl the vials gently several times to mix the contents (10 x, Note 9). (CAUTION: Vials warm up).

prepare Zero press ZERO Countdown 5:00

Zero accepted prepare Test press TEST

- 17. Press **ZERO** key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

- 18. Remove the vial from the sample chamber.
- 19. Place the vial (the sample, Note 10) in the sample chamber making sure that the marks λ are aligned.
- 20. Press TEST key.

The result is shown in the display in mg/l Nitrogen.

Notes:

- Use appropriate safety precautions and good lab technique during the procedure for most accurate results.
- 2. Use a funnel to add the reagent.
- 3. Wipe off any Persulfate reagent that may get on the lid or the tube threads.
- 4. Volumes for samples and blank should always be metered by using 2 ml volumetric pipettes (class A).
- 5. One blank is sufficient for each set of samples.
- 6. The reagent may not dissolve completely.
- 7. It is very important to remove the vials from the reactor after exactly 30 minutes.
- 8. The reagent will not completely dissolve.
- Hold the vial in a vertical position with the cap pointing up. Turn the vial upside-down.
 Wait for all of the solution to flow down to the cap. Return the vial to the upright position.
 Wait for all the solution to flow to the bottom of the vial. This process is one inversion; 10 inversions = approx. 30 seconds.
- 10. After zero calibration with the blank it is possible to measure several samples.
- 11. Great quantities of nitrogen free, organic compounds which are included in some water samples may reduce the effectiveness of the digestion by reacting with the Persulfate reagent. Samples which are well known to content great quantities of organic compounds must be diluted and digestion and measurement must be repeated for checking the effectiveness of the digestion.
- 12. Application: for water, wastewater and seawater
- 13. Interferences:

Interfering substances that resulted in a concentration change of 10%: Bromide more than 60 mg/l and Chloride more than 1000 mg/l produce positive interferences.

TN = Total Nitrogen

14. ▲ N NH,

▼ NH,

Nitrogen, total HR with Tube Test

5 - 150 mg/l N

Ø 16 mm

Countdown 3:00

start: 🔟

Countdown 2:00 start: 🔟

Insert the adapter for 16 mm Ø vials.

- 1. Open two TN Hydroxide HR digestion vials and add the contents of one TN Persulfate Rgt. Powder **Pack** (Note 2, 3).
- 2. Add **0.5 ml deionized water** to the prepared vial (this is the blank, Note 4, 5).
- 3. Add **0.5 ml of the water sample** to the other prepared vial (this is the sample).
- 4. Close the vials with the caps and shake to mix the contents (at least 30 seconds. Note 6).
- 5. Heat the vials for **30 minutes** in a preheated reactor at a temperature of 100°C (Note 7).
- 6. After 30 Minutes remove the vials from the reactor. (CAUTION: The vials are hot!) Allow the vials to cool to room temperature.
- 7. Open the cooled digestion vials and add the contents of **one** TN Reagent A Powder Pack to each vial (Note 2).
- 8. Close the vials with the caps and shake to mix the contents (at least 15 seconds).
- Press [] key. Wait for a reaction period of 3 minutes. After the reaction period is finished proceed as follows:
- 10. Open the digestion vials and add the contents of one TN Reagent B Powder Pack to each vial (Note 2).
- 11. Close the vials with the caps and shake to mix the contents (at least 15 seconds, Note 8).
- 12. Press [_] key. Wait for a reaction period of 2 minutes. After the reaction period is finished proceed as follows:
- 13. Open two TN Acid LR/HR (Reagent C) vials and add 2 ml of the digested, treated blank to one vial (this is the blank).
- 14. Add 2 ml of the digested, treated water sample to the other TN Acid LR/HR vial (this is the sample).
- 15. Close the vials with the caps and swirl the vials gently several times to mix the contents (10 x, Note 9).

(CAUTION: Vials warm up).

prepare Zero press ZERO Countdown 5:00

Zero accepted prepare Test press TEST

- Place the vial (the blank) in the sample chamber making sure that the \(\frac{1}{2} \) marks are aligned.
- 17. Press **ZERO** key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

- 18. Remove the vial from the sample chamber.
- 19. Place the vial (the sample, Note 10) in the sample chamber making sure that the $\frac{1}{\lambda}$ marks are aligned.
- 20. Press **TEST** kev.

The result is shown in the display in mg/l Nitrogen.

Notes:

- Appropriate safety precautions and a good lab technique should be used during the whole procedure.
- 2. Use a funnel to add the reagent.
- 3. Wipe off any Persulfate reagent that may get on the lid or the tube threads.
- 4. Volumes for samples and blank should always be metered by using suitable pipettes (class A).
- 5. One blank is sufficient for each set of samples.
- 6. The reagent may not dissolve completely.
- 7. It is very important to remove the vials from the reactor after exactly 30 minutes.
- 8. The reagent will not completely dissolve.
- 9. Hold the vial in a vertical position with the cap pointing up. Turn the vial upside-down. Wait for all of the solution to flow down to the cap. Return the vial to the upright position. Wait for all the solution to flow to the bottom of the vial. This process is one inversion; 10 inversions = approx. 30 seconds.
- 10. After zero calibration with the blank it is possible to measure several samples.
- 11. Great quantities of nitrogen free, organic compounds which are included in some water samples may reduce the effectiveness of the digestion by reacting with the Persulfate reagent. Samples which are well known to content great quantities of organic compounds must be diluted and digestion and measurement must be repeated for checking the effectiveness of the digestion.
- 12. Application: for water, wastewater and seawater
- 13. Interferences:

Interfering substances that resulted in a concentration change of 10%: Bromide more than 60 mg/l and Chloride more than 1000 mg/l produce positive interferences.

TN = Total Nitrogen

14. 🛕 N

NH,

▼ NH,

Oxygen, active* with Tablet

0.1 – 10 mg/l O₂

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one DPD No. 4 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00 8. Press TEST key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l active Oxygen.

Notes:

- * Active Oxygen is a synonym for a common disinfectant (based on "Oxygen") in Swimming Pool Treatment.
- 1. When preparing the sample, the escape of Oxygen gases, e.g. by pipetting or shaking, must be avoided.
- 2. The analysis must take place immediately after taking the sample.

Oxygen, dissolved with Vacu-vials K-7553 (see Notes)

10 – 800 μg/l O₃

Insert the adapter for 13 mm Ø round vials.

 Place the blank in the sample chamber. The blank is part of the test kit.

prepare Zero press ZERO

2. Press **ZERO** key.

- 3. Remove the blank from the sample chamber.
- Water should flow through the special sample container for several minutes to remove any air bubbles sticking at the surface.

The water must flow from the bottom to the top.

 When the sample container is bubble-free press one Vacu-vial into the lower edge of the sample container. The Vacu-vial breaks at the neck and the vial fills automatically.

A small volume of inert gas remains in the Vacu-vial*.

 Remove the Vacu-vial* point downwards from the sample container immediately.

As the contents of the vial has a higher density than water, it is important to remove the vial from the sample container within 5 seconds to prevent any loss of reagent.

- The Vacu-vial* is closed with one finger (covered with a glove) to prevent entry of air. Invert the vial several times. Dry the outside of the vial.
- 8. Place the Vacu-vial in the sample chamber.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

The result is shown in the display in µg/l Oxygen.

Notes:

- 1. This method is adapted from CHEMetrics.
- 2. Read the original test instruction and the MSDS (delivered with the test) before performing the test. MSDS also at www.chemetrics.com available.
- 3. $Vacu-vials^{\circ}$ is a registered trade mark of the company CHEMetrics, Inc. / Calverton, VA, U.S.A.

Ozone with Tablet

0.02 – 1 mg/l O₃

Ozon

>> with Cl without Cl

The following selection is shown in the display:

>> with Cl

for the determination of Ozone in the presence of Chlorine.

>> without Cl

for the determination of Ozone in the absence of Chlorine.

Select the desired method with the arrow keys $[\blacktriangle]$ and $[\blacktriangledown]$. Confirm with $[_]$ key.

Notes:

1. Vial cleaning:

As many household cleaners (e.g. dishwasher detergent) contain reducing substances, the subsequent determination of Ozone may show lower results. To avoid any measurement errors, only use glassware free of Chlorine consumption.

Preparation: Put all applicable glassware into Sodium hypochlorite solution (0.1 g/l) for one hour, then rinse all glassware thoroughly with deionized water.

2. Preparing the sample:

When preparing the sample, the escape of Ozone gases, e.g. by pipetting or shaking, must be avoided. The analysis must take place immediately after taking the sample.

- 3. The DPD color development is carried out at a pH value of 6.3 to 6.5. The reagent tablet therefore contains a buffer for the pH adjustment.
 - Strong alkaline or acidic water samples must be adjusted between pH 6 and pH 7 before the tablet is added (use 0.5 mol/l Sulfuric acid resp. 1 mol/l Sodium hydroxide).
- 4. Turbidity (lead to errors):

The use of the DPD No. 1 tablet in samples with high Calcium ion content* and/or high conductivity* can lead to turbidity of the sample and therefore incorrect measurements. * it is not possible to give exactly values, because the development of turbidity depends on nature and ingredients of the sample.

5. Exceeding of the measuring range:

Concentrations above 5 mg/l Ozone can produce results within the measuring range up to 0 mg/l. In this event, the water sample must be diluted with water free of Ozone. 10 ml of the diluted sample will be mixed with the reagent and the measurement repeated.

6. If ??? is displayed at the diffentiated test result see page 242.

Oxidizing agents such as Bromine, Chlorine etc. interfere as they react like Ozone.

Ozone, in the presence of Chlorine with Tablet

0.02 - 1 mg/l O₃

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the \overline{X} marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet and one DPD No. 3 tablet straight from the foil and crush the tablets using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare T1 press TEST

Countdown 2:00

Press TEST key.Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

- Remove the vial from the sample chamber, empty the vial, rinse vial and cap several times. Fill the vial with a few drops of the water sample.
- Add one DPD No. 1 tablet and one DPD No. 3 tablet straight from the foil and crush the tablets using a clean stirring rod.

- Fill a second clean vial with 10 ml of the water sample.
- 13. Add **one GLYCINE tablet** straight from the foil and crush the tablet using a clean stirring rod.
- 14. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 15. Transfer the contents of the second vial into the prepared vial.
- 16. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 17. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

T1 accepted prepare T2 press TEST

18. Press **TEST** key.

Wait for a reaction period of 2 minutes.

Countdown 2:00

After the reaction period is finished the measurement starts automatically.

*,** mg/l O₃
*,** mg/l total Cl

The result is shown in the display in:

mg/l Ozone mg/l total Chlorine

Notes:

See page 129.

Ozone, in absence of Chlorine with Tablet

0.02 - 1 mg/l O₃

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- Remove the vial from the sample chamber and empty it, leaving a few drops remaining in the vial.
- Add one DPD No. 1 tablet and one DPD No. 3 tablet straight from the foil and crush the tablets using a clean stirring rod.
- 6. Add water sample to the 10 ml mark.
- Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the \sqrt{n} marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00

Press TEST key.Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Ozone.

Notes:

See page 129.

This page intentionally left blank

PHMB (Biguanide) with Tablet

2 - 60 mg/l PHMB

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

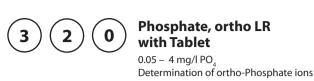
2. Place the vial in the sample chamber making sure that the \overline{X} marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one PHMB PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press TEST key.


The result is shown in the display in mg/l PHMB.

Notes:

- 1. Clean vials with the brush after analysis directly.
- 2. Over time, it is possible that the vials and stirring rods may turn blue in color. In this case, clean vials and stirring rods with a laboratory detergent (see chapter 1.2.2 Cleaning of vials and accessories for analysis). Rinse vials and caps thoroughly with tap water followed by deionized water.
- 3. The test result is influenced by Hardness and Total Alkalinity.

 The calibration of this method was done using water of the following concentration:

Ca-Hardness: 200 mg/l CaCO_3 Total Alkalinity: 120 mg/l CaCO_3

Phosphate, ortho HR with Tablet

1 – 80 mg/l PO₄ Determination of ortho-Phosphate ions

3 Phosphate, ortho with Powder Pack

0.06 – 2.5 mg/l PO₄ Determination of ortho-Phosphate ions

Phosphate, ortho with Tube Test

0.06 – 5 mg/l PO₄ Determination of ortho-Phosphate ions

Phosphate 1, ortho with Vacu-vials°

5 – 40 mg/l PO₄ Determination of ortho-Phosphate ions

Phosphate 2, ortho with Vacu-vials

0.05 – 5 mg/l PO₄ Determination of ortho-Phosphate ions

Phosphate, acid hydrolizable with Tube Test

0.02 – 1.6 mg/l P Determination of ortho-Phosphate ions + condensed, inorganic Phosphates

Phosphate, total with Tube Test

0.02 – 1.1 mg/l P Determination of ortho-Phosphate ions + condensed, inorganic Phosphates + organically combined Phosphates

General:

Ortho-Phosphate ions react with the reagent to a intense blue color (methods **320**, **323**, **324**, **325** and **326**).

Phosphate in organic and condensed inorganic forms (meta-, pyro- and polyphosphates) must be converted to ortho-Phosphate ions before analysis.

Pretreatment of the sample with acid and heat provides the conditions for hydrolysis of the condensed inorganic forms. Organically combined phosphates are converted to ortho-Phosphate ions by heating with acid and persulfate.

The amount of organically combined phosphates can be calculated: mg/l Phosphate, organic = mg/l Phosphate, total – mg/l Phosphate, acid hydrolyzable

In methods **321** and **327** the ortho-Phosphat ions react with the Vanadate-molybdate-reagent under acid conditions to a yellow colored product.

Notes - only for tube tests and tests with powder packs: 323, 324, 325, 326

- 1. Application: for water, wastewater and seawater.
- Highly buffered samples or samples with extreme pH Values should be adjusted between pH 2 and pH 10 before analysis (with 1 mol/l Hydrochloric acid or 1 mol/l Sodium hydroxide).
- 3. Interferences:
 Large amounts of turbidity may cause inconsistent results.

Interfering substance	Interference level:
Aluminium	greater than 200 mg/l
Arsenate	at any level
Chromium	greater than 100 mg/l
Copper	greater than 10 mg/l
Iron	greater than 100 mg/l
Nickel	greater than 300 mg/l
Silica (Silicium dioxide)	greater than 50 mg/l
Silicate	greater than 10 mg/l
Sulfide	at any level
Zinc	greater than 80 mg/l

Phosphate, ortho ≜ Phosphorus, reactive

Phosphate, ortho LR with Tablet

0.05 - 4 mg/l PO

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close the cap tightly.

prepare Zero press ZERO 2. Place the vial in the sample chamber making sure that the marks $\overline{\chi}$ are aligned.

- Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one PHOSPHATE No. 1 LR tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Add one PHOSPHATE No. 2 LR tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 8. Place the vial in the sample chamber making sure that the marks $\overline{\chi}$ are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

Wait for a reaction period of 10 minutes.

Countdown 10:00

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l ortho-Phosphate.

Notes:

- 1. Only ortho-Phosphate ions react.
- 2. The tablets must be added in the correct sequence.
- 3. The test sample should have a pH-Value between 6 and 7.
- 4. Interferences:

Higher concentrations of Cu, Ni, Cr (III), V (V) and W (VI) interfere due to their color. Silicates doe not interfere (masked by Citric acid in the tablets).

- 5. see also page 137
- 6. Conversion:

```
mg/I P = mg/I PO_4 \times 0.33

mg/I P_2O_5 = mg/I PO_4 \times 0.75
```

7. **A** PO₄

▼ P₂O₅

Phosphate HR, ortho with Tablet

1 - 80 mg/l PO,

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one PHOSPHATE HR P1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Add one PHOSPHATE HR P2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown

9. Press TEST key.

Wait for a **reaction period of 10 minutes**.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l ortho-Phosphate.

Notes:

- 1. For samples under 5 mg/l PO_4 it is best to use method 320 "Phosphate LR, ortho with Tablet".
- 2. Only ortho-Phosphate ions react.
- 3. see also page 137
- 4. Conversions: $mg/I P = mg/I PO_4 \times 0.33$ $mg/I P_2O_5 = mg/I PO_4 \times 0.75$
- 5. ▲ PO₄

 P

 P,O₅

Phosphate, ortho with Powder Pack

0.06 - 2.5 mg/l PO₄

 Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

4. Remove the vial from the sample chamber.

- Add the contents of Phosphate Rgt. F10 Powder Pack straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 10-15 sec., Note 1).

Zero accepted prepare Test press TEST

Countdown 2:00 8. Press TEST key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l ortho-Phosphate.

Notes:

- 1. The reagent does not dissolve completely.
- 2. See also page 137
- 3. Conversions: $mg/l P = mg/l PO_4 \times 0.33$ $mg/l P_2O_5 = mg/l PO_4 \times 0.75$
- 4. ▲ PO₄
 P
 P,O₅

Phosphate, ortho with Tube Test

0.06 - 5 mg/l PO

Insert the adapter for 16 mm Ø vials.

- 1. Open the white cap of one tube PO₄-P Dilution and add 5 ml of the water sample.
- Place the vial in the sample chamber making sure that the $\sqrt{\frac{1}{1}}$ marks are aligned.

prepare Zero

- Press **ZERO** key.
- Remove the vial from the sample chamber.
- 5. Add the contents of one Phosphate Rgt. F10 Powder Pack straight from the foil to the water sample (Note 1).
- 6. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 10-15 sec., Note 2).
- 7. Place the vial in the sample chamber making sure that the $\sqrt{\frac{1}{1}}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00

8. Press **TEST** key.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

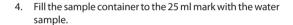
The result is shown in the display in mg/l ortho-Phosphate.

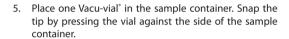
Notes:

- 1. Use a funnel to add the reagent.
- 2. The reagent does not dissolve completely.
- 3. See also page 137
- 4. Conversions: $mg/l~P = mg/l~PO_{_4} \times 0.33$ $mg/l~P_{_2}O_{_5} = mg/l~PO_{_4} \times 0.75$
- 5. ▲ PO₄
 P
 P,O₅

Phosphate 1, ortho with Vacu-vials K-8503 (see Notes)

5 - 40 mg/l PO,


Insert the adapter for 13 mm Ø vials.


1. Place the blank in the sample chamber. The blank is part of the test kit.

prepare Zero press ZERO

3. Remove the blank from the sample chamber.

The Vacu-vial* breaks at the neck and the vial fills automatically.

A small volume of inert gas remains in the Vacu-vial*.

- Mix the contents of the Vacu-vial by inverting it several times, allowing the bubble to move from one end to the other. Dry the outside of the vial.
- 7. Place the Vacu-vial[®] in the sample chamber.

4 20 ►

Zero accepted prepare Test press TEST

Countdown 5:00

8. Press TEST key.

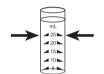
Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

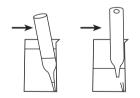
The result is shown in the display in mg/l ortho-Phosphate.

Notes:

- 1. This method is adapted from CHEMetrics.
- 2. Read the original test instruction and the MSDS (delivered with the test) before performing the test. MSDS also at www.chemetrics.com available.
- 3. Vacu-vials* is a registered trade mark of the company CHEMetrics, Inc. / Calverton, VA U.S.A.
- 4. Only ortho-Phosphate ions react.
- 5. Sulfide, Thiosulfate und Thiocyanate cause low test results.
- 6. ▲ PO₄
 P
 P,O₅


Phosphate 2, ortho with Vacu-vials K-8513 (see Notes)

 $0.05 - 5 \, \text{mg/l PO}_{2}$


Insert the adapter for 13 mm Ø vials.

 Place the blank in the sample chamber. The blank is part of the test kit.

prepare Zero press ZERO

Zero accepted prepare Test press TEST

Countdown 3:00

2. Press **ZERO** key.

- 3. Remove the blank from the sample chamber.
- Fill the sample container to the 25 ml mark with the water sample.
- 5. Fill the sample container with drops of the same size by holding the bottle vertically and squeeze slowly:

2 drops A-8500 Activator Solution

- Close the sample container with the cap tightly and swirl several times to mix the contents.
- Place one Vacu-vial* in the sample container. Snap the tip by pressing the vial against the side of the sample container. The Vacu-vial* breaks at the neck and the vial fills automatically. A small volume of inert gas remains in the Vacu-vial*.
- Mix the contents of the Vacu-vial by inverting it several times, allowing the bubble to move from one end to the other. Dry the outside of the vial.
- 9. Place the Vacu-vial[®] in the sample chamber.
- 10. Press TEST kev.

Wait for a reaction period of 3 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l ortho-Phosphate.

Notes:

- 1. This method is adapted from CHEMetrics.
- 2. Read the original test instruction and the MSDS (delivered with the test) before performing the test. MSDS also at www.chemetrics.com available.
- 3. Vacu-vials* is a registered trade mark of the company CHEMetrics, Inc. / Calverton, VA U.S.A.
- 4. Only ortho-Phosphate ions react.
- 5. Sulfide, Thiosulfate und Thiocyanate cause low test results.
- 6. ▲ PO₄ P

Phosphate, acid hydrolyzable with Tube Test

 $0.02 - 1.6 \text{ mg/l P} (\pm 0.06 - 5 \text{ mg/l PO}_{\star})$

Insert the adapter for 16 mm Ø vials.

- Open the white cap of one digestion tube PO4-P Acid reagent and add 5 ml of the water sample.
- 2. Close the vial tightly with the cap and invert gently several times to mix the contents.
- Heat the vials for 30 minutes in the preheated reactor at a temperature of 100°C.
- After 30 minutes remove the vial from the reactor. (CAUTION: The vials are hot!)
 Allow the vials to cool to room temperature.
- Open the cooled digestion vial and add 2 ml 1.00 N Sodium Hydroxide solution to the vial.
- Close the vial with the cap and invert gently several times to mix the contents.
- 7. Place the vial in the sample chamber making sure that the

 ∫ marks are aligned.
- 8. Press **ZERO** key.
- •
- 10. Add the contents of **one Phosphate Rgt. F10 Powder Pack** straight from the foil to the vial (Note 2).

Remove the vial from the sample chamber.

- 11. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 10-15 sec., Note 3).
- 12. Place the vial in the sample chamber making sure that the $\frac{1}{h}$ marks are aligned.
- 13. Press TEST kev.

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l acid hydrolyzable Phosphate.

Zero accepted prepare Test press TEST

Countdown 2:00

Notes:

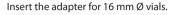
- 1. Use appropriate safety precautions and good lab technique during the procedure for most accurate results.
- 2. Use a funnel to add the reagent.
- 3. The reagent will not dissolve completely.
- 4. See page 137 for further information
- 5. Conversions:

$$mg/l PO_4 = mg/l P x 3.07$$

 $mg/l P_2O_5 = mg/l P x 2.29$

6. ▲ PO₄

▼ P₂O₅



Phosphate, total with Tube Test

 $0.02 - 1.1 \text{ mg/l P} (\pm 0.06 - 3.5 \text{ mg/l PO}_{.})$

- Open the white cap of one digestion tube PO4-P Acid reagent and add 5 ml of the water sample.
- 2. Add the contents of one Potassium Persulfate F10 Powder Pack straight from the foil to the vial (Note 2).
- 3. Close the vial tightly with the cap and invert several times to mix the contents.
- 4. Heat the vials for **30 minutes** in the preheated reactor at a temperature of 100°C.
- After 30 minutes remove the vial from the reactor. (CAUTION: The vials are hot!) Allow the vials to cool to room temperature.
- 6. Open the cooled digestion vial and add 2 ml 1.54 N Sodium Hydroxide Solution to the vial.
- 7. Close the vial with the cap and invert gently several times to mix the contents.
- 8. Place the vial in the sample chamber making sure that the \int marks are aligned.

prepare Zero press ZERO

Press **ZERO** key.

- 10. Remove the vial from the sample chamber.
- 11. Add the contents of one Phosphate Rgt. F10 Powder Pack straight from the foil to the vial (Note 2).
- 12. Close the vial tightly with the cap and swirl several times to mix the contents (approx. 10-15 sec., Note 3).
- 13. Place the vial in the sample chamber making sure that the \int marks are aligned.

Zero accepted prepare Test press TEST

Countdown 2:00

14. Press **TEST** key. Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l total Phosphate.

Notes:

- 1. Use appropriate safety precautions and good lab technique during the procedure for most accurate results.
- 2. Use a funnel to add the reagent.
- 3. The reagent will not dissolve completely.
- 4. see also page 137
- 5. Conversions:

$$mg/I PO_4 = mg/I P x 3.07$$

 $mg/I P_3O_5 = mg/I P x 2.29$

6. A P

PO,

 $\mathbf{\nabla} P_2 \vec{O_5}$

pH-value LR 5.2 – 6.8 with Tablet

- Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one BROMOCRESOLPURPLE PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display as pH-value.

Notes:

- 1. For photometric determination of pH-Values only use BROMOCRESOLPURPLE tablets in black printed foil pack and marked with PHOTOMETER.
- 2. pH-Values below 5.2 and above 6.8 can produce results inside the measuring range. A confirmation/plausibility test (pH-meter) is recommend.
- 3. The accuracy of the colorimetric determination of pH-values depends on various boundary conditions (buffer capacity of the sample, salt contents etc.).
- Salt error
 Correction of test results (average values) for samples with salt contents of:

Indicator	Salt content		
Bromcresolpurple	1 molar	2 molar	3 molar
	- 0.26	- 0.33	- 0.31

The values of Parson and Douglas (1926) are based on the use of Clark and Lubs buffers

1 Mol NaCl = 58.4 g/l = 5.8 %

pH-value 6.5 – 8.4 with Tablet

- Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one PHENOL RED PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the \overline{X} marks are aligned.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

The result is shown in the display as pH-value.

Notes:

- 1. For photometric determination of pH-values only use PHENOL RED tablets in black printed foil pack and marked with PHOTOMETER.
- 2. Water samples with low values of Alkalinity-m (below 35 mg/l CaCO₃) may give wrong pH readings.
- 3. pH-values below 6.5 and above 8.4 can produce results inside the measuring range. A confirmation/plausibility test (pH-meter) is recommended.
- 4. The accuracy of the colorimetric determination of pH-values depends on various boundary conditions (buffer capacity of the sample, salt contents etc.).
- 5. Salt error
 Correction of test results (average values) for samples with salt contents of:

Indicator		Salt content	
Phenol red	1 molar	2 molar	3 molar
	- 0.21	- 0.26	- 0.29

The values of Parson and Douglas (1926) are based on the use of Clark and Lubs buffers. 1 Mol NaCl = $58.4~\rm g/l = 5.8~\%$

pH-value 6.5 – 8.4 with Liquid Reagent

- Fill a clean vial (24 mm Ø) with 10 ml of the water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- 5. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly:

6 drops of PHENOL RED solution

- 6. Close the vial tightly with the cap and swirl several times to mix the contents.
- Place the vial in the sample chamber making sure that the
 √ marks are aligned.

Zero accepted prepare TEST press Test

8. Press **TEST** key.

The result is shown in the display as pH-value.

Notes:

- 1. When testing chlorinated water the residual chlorine contents can influence the color reaction of the liquid reagent. This can be avoided (without interfering the pH measurement) by adding a small crystal of Sodium thiosulfate (Na₂S₂O₃ x 5 H₂O) to the sample before adding the PHENOL RED solution. PHENOL RED tablets already contain Thiosulfate.
- 2. Differing drop sizes may cause a discrepancy in results compared with tablets. This can be minimized by using a pipette (0.18 ml PHENOL RED solution is equivalent to 6 drops).
- 3. After use, replace the bottle cap securely.
- 4. Store the reagent in a cool, dry place ideally at between 6°C / 40°F and 10°C/ 50°F.

pH-value HR 8.0 – 9.6 with Tablet

- Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.
- Place the vial in the sample chamber making sure that the
 \(\overline{\pi} \) marks are aligned.

prepare Zero press ZERO

- 3. Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- Add one THYMOLBLUE PHOTOMETER tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Zero accepted prepare TEST press Test

8. Press **TEST** key.

The result is shown in the display as pH-value.

Notes:

- 1. For photometric determination of pH-values only use THYMOLBLUE tablets in black printed foil pack and marked with PHOTOMETER.
- 2. pH-Values below 8.0 and above 9.6 can produce results inside the measuring range. A plausibility/confirmation test (pH-meter) is recommended.
- 3. The accuracy of the colorimetric determination of pH-values depends on various boundary conditions (buffer capacity of the sample, salt contents etc.).
- 4. Salt error

Correction of test results (average values) for samples with salt contents of:

Indicator		Salt content	
Thymolblue	1 molar	2 molar	3 molar
	- 0.22	- 0.29	- 0.34

The values of Parson and Douglas (1926) are based on the use of Clark and Lubs buffers. 1 Mol NaCl = 58.4 g/l = 5.8 %

Potassium with Tablet

0.7 - 12 mg/l K

Ø 24 mm

- 1. Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- Press **ZERO** key.
- Remove the vial from the sample chamber.
- 5. Add one Potassium T tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press **TEST** key.

The result is shown in the display in mg/l Potassium.

Notes:

1. If Potassium is present, a cloudy solution will result.

Silica/Silicon dioxide with Tablet

0.05 - 4 mg/l SiO₃

- Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.
- Place the vial in the sample chamber making sure that the
 \(\overline{\text{marks}} \) marks are aligned.
- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one SILICA No. 1 tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

Countdown 5:00 start: _

prepare Zero press ZERO

Press [] key.
 Wait for a reaction period of 5 minutes.

After the reaction period is finished proceed as follows:

- Add one SILICA PR tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- Add one SILICA No. 2 tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- Close the cap tightly and swirl several times until the tablets are dissolved.
- 11. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

12. Press **TEST** key.

Wait for a reaction period of 1 minute.

Countdown 1:00

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Silica.

Notes:

- 1. The tablets must be added in the correct sequence.
- 2. Phosphate ions generally do not interfere under the given reaction conditions.
- 3. If Phosphate is known to be absent, the addition of the SILICA PR tablet may be omitted.
- 4. Conversion: mg/l Si = mg/l SiO₂ x 0.47
- 5. ▲ SiO₂ ▼ Si

Silica LR / Silicon dioxide LR with Powder Pack and Liquid Reagent

0.1 - 1.6 mg/l SiO₃

Ø 24 mm

Use two clean vials (24 mm Ø) and mark one as blank for zeroing.

- Fill each vial with 10 ml of the water sample.
- 2. Add 0.5 ml Molybdate 3 reagent solution into each vial.
- 3. Close the vials tightly with the caps and swirl several times to mix the contents (Note 1).

Countdown 4:00 start: 🔟

Countdown 1:00 start:

4. Press [] key.

Wait for a reaction period of 4 minutes (Note 2).

After the reaction period is finished proceed as follows:

- 5. Add the contents of one Silica Citric Acid F10 Powder **Pack** straight from the foil into each vial.
- 6. Close the vials tightly with the caps and swirl several times to mix the contents.
- 7. Press [] key.

Wait for a **reaction period of 1 minute** (Note 3).

After the reaction period is finished proceed as follows:

- 8. Place the vial (the blank) in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.
- 9. Add the contents of one LR Silica Amino Acid F F10 Powder Pack straight from the foil into the vial (the sample).
- 10. Close the vial tightly with the cap and swirl several times to mix the contents.

prepare Zero
press ZERO

Countdown 2:00

11. Press **ZERO** key (blank is already placed in the sample chamber - see point 8).

Wait for a reaction period of 2 minutes.

After the reaction period is finished the zero-reading starts automatically.

- 12. Remove the vial from the sample chamber.
- Place the vial (the sample) in the sample chamber making sure that the
 \(\frac{1}{2} \) marks are aligned.

Zero accepted prepare Test press TEST

14. Press **TEST** key.

The result is shown in the display in mg/l Silica.

Notes:

- Close the vials with the cap immediately after adding the Molybdate 3 reagent solution; otherwise, low results can occur.
- The given reaction time of 4 minutes refers to a water sample temperature of 20°C/70°F.
 At 30°C/85°F a reaction time of 2 minutes, at 10°C/50°F a reaction time of 8 minutes is required.
- 3. The given reaction time of 1 minute refers to a water sample temperature of $20^{\circ}\text{C}/70^{\circ}\text{F}$. At $30^{\circ}\text{C}/85^{\circ}\text{F}$ a reaction time of 30 seconds, at $10^{\circ}\text{C}/50^{\circ}\text{F}$ a reaction time of 2 minutes is required.
- 4. Interferences:

Substance	Interference
Iron	large amounts interfere
Phosphate	does not interfere at concentrations less than 50 mg/l PO_4 at 60 mg/l PO_4 the interference is approx. – 2% at 75 mg/l PO_4 the interference is approx. – 11%
Sulfide	interfere at all levels

Occasionally water samples contain silica compounds which reacts very slowly with Molybdate.

A pre-treatment with Sodium Hydrogen Carbonate and then with Sulfuric Acid will make these forms reactive with Molybdate (pre-treatment is given in "Standard Methods for the Examination of Water and Wastewater" under "Silica-Digestion with Sodium Bicarbonate").

5. ▲ SiO₂ ▼ Si

Silica HR / Silicon dioxide HR with Vario Powder Pack

(Note 1), close tightly with the cap.

1 - 90 mg/l SiO₂

Ø 24 mm

prepare Zero press ZERO

- 2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

1. Fill a clean vial (24 mm Ø) with 10 ml of the water sample

- Press ZERO key.
- Remove the vial from the sample chamber.
- 5. Add the contents of one Silica Molybdate F10 Powder **Pack** straight from the foil to the water sample.
- 6. Close the vial tightly with the cap and swirl several times to mix the contents.
- 7. Add the contents of one Silica HR Acid Rgt. F10 Powder Pack straight from the foil to the same water sample (Note 2).
- 8. Close the vial tightly with the cap and swirl several times to mix the contents.

Countdown 10:00 start:

9. Press [] key. Wait for a reaction period of 10 minutes.

After the reaction period is finished proceed as follows:

- 10. Add the contents of one Silica Citric Acid F10 Powder Pack straight from the foil to the water sample (Note 3).
- 11. Close the vial tightly with the cap and swirl several times to mix the contents.
- 12. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.
- 13. Press **TEST** key.

Zero accepted prepare Test press TEST

Countdown 2:00

Wait for a reaction period of 2 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Silica.

Notes:

- 1. Temperature of the sample should be 15° C / 60° F 25° C / 80° F.
- 2. A yellow color develops if Silica or Phosphate is present.
- 3. This step removes any yellow color due to Phosphate.
- 4 Interferences:

Substance	Interference
Iron	large amounts interfere
Phosphate	does not interfere at concentrations less than 50 mg/l PO_4 at 60 mg/l PO_4 the interference is approx. – 2% at 75 mg/l PO_4 the interference is approx. – 11 %
Sulfide	interfere at all levels

Occasionally water samples contain silica forms which reacts very slowly with Molybdate. The nature of these forms is not known.

A pre-treatment with Sodium Hydrogencarbonate and then with Sulfuric Acid will make these forms reactive to Molybdate (pre-treatment is given in "Standard Methods for the Examination of Water and Wastewater" under "Silica-Digestion with Sodium Bicarbonate").

5. ▲ SiO₂ ▼ Si

Sodium hypochlorite (Soda bleaching lye) with Tablet

0.2 - 16 % w/w NaOCI

Preparation:

- Fill a 5 ml plastic syringe with the test solution, ensuring that all air bubbles are expelled. Fill the 5 ml test solution slowly into a 100 ml beaker and dilute to the 100 ml mark with chlorine-free water. Mix thoroughly.
- Fill a 5 ml plastic syringe with the diluted test solution (step 1) to the 1 ml mark, ensuring that all air bubbles are expelled. Fill the 1 ml test solution slowly into a 100 ml beaker and dilute to the 100 ml mark with chlorine-free water. Mix thoroughly.

Performing test procedure:

- Fill a clean vial (24 mm Ø) with 10 ml of the prepared water sample, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the $\sqrt{}$ marks are aligned.

prepare Zero press ZERO

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add one CHLORINE HR (KI) tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Add one ACIDIFYING GP tablet straight from the foil to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.

8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

9. Press **TEST** key.

The result is shown in the display in % w/w as available chlorine present in the original sample of Sodium hypochlorite.

Notes:

- 1. Exercise caution when handling sodium hypochlorite. The material has a very strong alkalinity and can cause corrosion. Contact with eyes, skin, clothes etc. should be avoided. Refer to precautionary information on the
- 2. The tablets must be added in the correct sequence.
- 3. This method provides a fast, simple and portable test. By carefully following the procedure, an accuracy +/-1 weight%can be obtained.

Sulfate with Tablet

5 - 100 mg/l SO

1. Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.

Ø 24 mm

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

Press **ZERO** key.

- Remove the vial from the sample chamber.
- 5. Add **one SULFATE T tablet** straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- 6. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 7. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

Zero accepted prepare Test press TEST

8. Press TEST key.

The result is shown in the display in mg/l Sulfate.

Notes:

1. If Sulfate is present, a cloudy solution will result.

Sulfate with Powder Pack

5 – 100 mg/l SO

 Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.

2

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

- 4. Remove the vial from the sample chamber.
- Add the contents of one Sulpha 4/F10 Powder Pack straight from the foil to the water sample.
- Close the vial tightly with the cap and swirl several times to mix the contents.

Zero accepted prepare Test press TEST

8. Press **TEST** key. Wait for a **reaction period of 5 minutes.**

Countdown 5:00

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Sulfate.

Note:

1. If Sulfate ions are present, a cloudy solution result.

Sulfide with Tablet

 $0.04 - 0.5 \,\text{mg/l S}$

Ø 24 mm

 Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

prepare Zero press ZERO

3. Press ZERO key.

- 4. Remove the vial from the sample chamber.
- Add one SULFIDE No. 1 tablet to the water sample and crush the tablet using a clean stirring rod and dissolve the tablet.
- Add one SULFIDE No. 2 tablet to the same water sample and crush the tablet using a clean stirring rod.
- 7. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.
- 8. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00 9. Press TEST key.

Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Sulfide.

Notes:

- 1. The tablets must added in the correct sequence.
- 2. Chlorine and other oxidizing agents which react with DPD do not interfere in the test.
- 3. To avoid loss of Sulfide, collect the sample carefully with a minimum of aeration. It is essential to test the sample immediately after collection.
- 4. Ideally, the temperature of the water sample should be 20°C/70°F. Significant variation from this temperature can influence results.
- 5. Conversion:

 $H_{2}S = mg/I S \times 1.06$

Sulfite with Tablet

0.1 - 5 mg/l SO,

 Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

prepare Zero press ZERO

3. Press ZERO key.

- 4. Remove the vial from the sample chamber.
- Add one SULFITE LR tablet straight from the foil to the water sample and crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- Place the vial in the sample chamber making sure that the
 marks are aligned.

Zero accepted prepare Test press TEST

Countdown 5:00 8. Press **TEST** key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Sulfite.

Notes:

1. **A** SO₃

▼ Na₂SO₃

Urea with Tablet and Liquid Reagent

0.1 – 3 mg/l (NH₃)₃CO / mg/l Urea

1. Fill a clean vial (24 mm Ø) with 10 ml of water sample, close tightly with the cap.

2. Place the vial in the sample chamber making sure that the $\sqrt{ }$ marks are aligned.

prepare Zero press ZERO

- Press **ZERO** key.
- 4. Remove the vial from the sample chamber.
- 5. Add 2 drops of Urea reagent 1 to the water sample (Note 8).
- 6. Close the vial tightly with the cap and swirl several times to mix the contents.

Countdown 5:00 start: 🔟

- 7. Add 1 drop of Urea Reagent 2 (Urease) to the same water sample (Note 8).
- 8. Close the vial tightly with the cap and swirl several times to mix the contents.
- 9. Press [] key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished proceed as follows:

- 10. Add one AMMONIA No. 1 tablet straight from the foil to the prepared water sample and mix to dissolve with a clean stirring rod.
- 11. Add one AMMONIA No. 2 tablet straight from the foil to the same water sample and mix to dissolve with a clean stirring rod.

12. Close the vial tightly with the cap and swirl several times until the tablets are dissolved.

13. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted prepare Test press TEST

Countdown 10:00

Press TEST key.
 Wait for a reaction period of 10 minutes.

After the reaction period is finished the measurement starts automatically.

The result is shown in the display in mg/l Urea.

Notes:

- 1. The sample temperature should be between 20°C / 70°F and 30° C / 85°F.
- 2. Testing should be completed within one hour after the sample has been taken.
- 3. The tablets must be added in the correct sequence.
- 4. Do not store reagent 1 below 10°C 10°C/50°F or granulation is possible.
 Store reagent 2 (Urease) in the refrigerator at a temperature of 4°C/40°F to 8°C/45°F.
- 5. The AMMONIA No. 1 tablet will only dissolve completely after the AMMONIA No. 2 tablet has been added.
- 6. Ammonium and chloramines are also measured during urea measurement.
- 7. Before analyzing seawater samples, a measuring spoon of Ammonia Conditioning Powder must be added to the sample and swirled to dissolve before AMMONIA No. 1 tablet is added
- 8. Fill the vial with drops of the same size by holding the bottle vertically and squeeze slowly.

Zinc with Tablet

 $0.02 - 1 \, \text{mg/l} \, \text{Zn}$

- Ø 24 mm
- Fill a clean vial (24 mm Ø) with 10 ml of water sample.
- Add one COPPER / ZINC LR tablet straight from the foil to the water sample, crush the tablet using a clean stirring rod.
- Close the vial tightly with the cap and swirl several times until the tablet is dissolved.

prepare Zero press ZERO

Countdown 5:00

5. Press **ZERO** key.

Wait for a reaction period of 5 minutes.

After the reaction period is finished the measurement starts automatically.

- 6. Remove the vial from the sample chamber.
- Add one EDTA tablet straight from the foil to the prepared vial and crush the tablet using a clean stirring rod.
- 8. Close the vial tightly with the cap and swirl several times until the tablet is dissolved.
- 9. Place the vial in the sample chamber making sure that the $\overline{\chi}$ marks are aligned.

Zero accepted press ZERO press TEST

10. Press **TEST** key.

The result is shown in the display in mg/l Zinc.

Notes:

- 1. The tablets must be added in the correct sequence.
- 2. In the case of high levels of residual chlorine, perform the analysis with a dechlorinated water sample. To dechlorinate, add one DECHLOR tablet to the water sample (point 1). Crush and mix to dissolve the tablet. Then add the COPPER / ZINC LR tablet (point 2) and continue with the test procedure as described above.

1.2 Important notes

1.2.1 Correct use of reagents

The reagents must be added in the correct sequence.

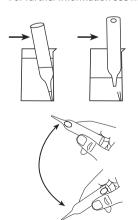
Tablet reagents:

The tablet reagents should be added to the water sample straight from the foil without touching them with your fingers.

Liquid reagents:

Add drops of the same size to the water sample by holding the bottle vertically and squeezing slowly.

After use, replace the bottle caps securely noting color coding.


Note recommendation for storage (e.g. cool and dry).

Powder Packs:

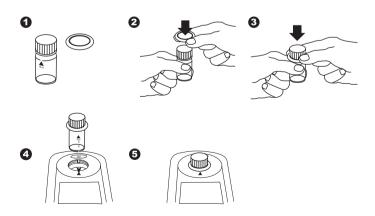
Vacu-vials® of CHEMetrics:

Vacu-vials* should be stored dark and at room temperature. For further information see MSDS.

1.2.2 Cleaning of vials and accessories for analysis

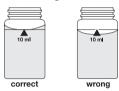
Vials, caps and stirring rods should be cleaned thoroughly **after each analysis** to prevent cross contamination and external influence.

Procedure:

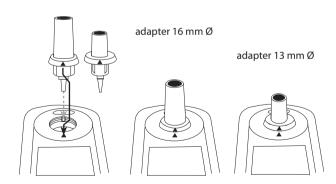

Clean vials and accessories after each analysis as soon as possible.

- Clean vials and accessories with laboratory detergent (e.g. Alconox * or Extran*)
- b. Rinse with tap water thoroughly.
- Depending on the procedure (see Notes), some tests require a rinse with diluted Hydrochloric acid solution.
- d. Rinse with deionized water thoroughly.

1.2.3 Guidelines for photometric measurements


- 1. Vials, caps and stirring rods should be cleaned thoroughly after each analysis to prevent external influences. Even minor reagent residues can cause errors in the test result.
- 2. The outside of the vial must be clean and dry before starting the analysis. Clean the outside of the vials with a towel. Remove fingerprints or other marks.
- 3. If there is no defined vial for the blank, the zeroing and the test should be carried out with the same vial as there may be slight differences in optical performance between vials.
- 4. The vials must be positioned in the sample chamber for zeroing and test with the Δ mark on the vial aligned with the ∇ mark on the instrument.

Correct position of the vial (Ø 24 mm):



- 5. Always perform zeroing and test with closed vial cap. Only use cap with sealing ring.
- Bubbles on the inside wall of the vial will lead to incorrect measurements. To prevent this, remove the bubbles by swirling the vial before performing the test.
- 7. Avoid spilling water into the sample chamber. If water should leak into the instrument housing, it can destroy electronic components and cause corrosion.
- Contamination of the lens in the sample chamber can result in errors. Check at regular intervals and – if necessary – clean the light entry surfaces of the sample chamber using a moist cloth or cotton swab.
- Large temperature differences between the instrument and the environment can lead to errors due to the formation of condensation in the area of the lens or on the vial.
- 10. To avoid possible errors caused by stray-light do not use the instrument in bright sunlight.

Correct filling of the vial:

Insertion of the adapter:

1.2.4 Sample dilution techniques

Proceed as follows for accurate dilutions:

Pipette the water sample (see table) into a 100 ml volumetric flask and fill up to 100 ml mark with deionized water. Swirl to mix the contents.

Water sample [ml]	Multiplication factor
1	100
2	50
5	20
10	10
25	4
50	2

Pipette the required volume of the diluted sample into the vial and proceed as described in the test methods.

Caution:

- 1. Dilution decreases accuracy.
- 2. Do not dilute water samples for measurement of pH-values. This will lead to incorrect test results. If there is displayed "Overrange" use another instrument (e.g. pH-meter).

1.2.5 Correcting for volume additions

If a larger volume of acid or base is used to pre-adjust the pH-value, a volume correction of the displayed result is necessary.

Example:

For adjusting the pH-value of a 100 ml water sample 5 ml of acid had to be added. The corresponding displayed result is 10 mg/l.

Total volume = 100 ml + 5 ml = 105 ml

Correction factor = 105 ml / 100 ml = 1.05

Corrected result = 10 mg/l x 1.05 = 10.5 mg/l

This page intentionally left blank.

Part 2

Instrument Manual

2.1 Operation

2.1.1 Set up

Before working with the colorimeter, insert the batteries (contents of delivery). See chapter 2.1.2 Saving data – Important Notes, 2.1.3 Replacement of batteries.

Before using the colorimeter, perform the following settings in the Mode-Menu:

- MODE 10: select language
- MODE 12: set date and time
- MODE 34: perform "Delete data"
- MODE 69: perform "User m. init" to initialize the user polynomial system

See chapter 2.4 Photometer settings.

2.1.2 Saving data – Important Notes

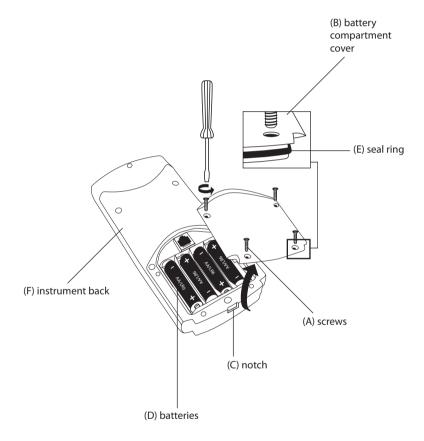
The batteries are necessary to retain stored results and colorimeter settings. Change the batteries as rapidly as possible to insure data retention—If the changing time exceeds 2 minutes all stored data and settings will be lost.

2.1.3 Replacement of batteries

See chapter 2.1.2 "Saving data - important notes" before replace batteries.

- 1. Switch the instrument off.
- 2. If necessary remove vial from the sample chamber.
- 3. Place the instrument upside down on a clean and even surface.
- 4. Unscrew the four screws (A) of the battery compartment cover (B).
- 5. Lift battery compartment cover at the notch (C) off.
- 6. Remove old batteries (D).
- 7. Insert 4 new batteries.

Be sure to note the correct polarity!


- 8. Replace the battery compartment cover. Check the seal ring (E) of the notch if it is tight-fitting
- 9. Tighten the screws carefully.

CAUTION

Dispose of used batteries in accordance with all federal, state and local regulations.

2.1.4 Instrument (explosion drawing):

- (A) screws
- (B) battery compartment cover
- (C) notch
- (D) batteries: 4 batteries (Size: AA/LR6)
- (E) seal ring
- (F) instrument back

CAUTION:

To assure that the instrument water resistance is retained:

- seal ring (E) must be in position
- battery compartment cover (B) must be attached with the four screws provided

This page intentionally left blank.

2.2 Overview of function keys

2.2.1 Overview

ON OFF	Switching the colorimeter on or off
Shift	Press shift key to achieve figures key 0-9. Keep the shift key depressed and press desired figures key. e.g.: [Shift] + [1][1]
7 Esc	Returning to selection of methods or previous menu
(F1)	Function key: description in the text if key available
F2	Function key: description in the text if key available
F3	Function key: description in the text if key available
8	Confirming
4 Mode	Menu of colorimeter settings and further functions
2 5 ▲ ▼	Moving the cursor ">>" up or down
3 Store	Storing of displayed test result
9 Zero	Performing Zero
6 Test	Performing Test
	Displaying date and time / user-countdown
0	

Decimal point

2.2.2 Displaying time and date:

Press ["clock"] key.

19:30:22 2008-06-15

The display shows:

After 15 seconds the colorimeter reverts to the previous display automatically

or press [4] key or [ESC].

2.2.3 User-countdown

To set a user-controlled timer/countdown:

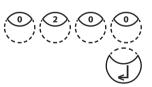
Press ["clock"] key.

19.30.20 2008-06-15

The display shows time and date:

Press ["clock"] key.

Countdown mm:ss


99:99

The display shows:

Either press $\cbar{\class{L}}$ key to accept the last used user-countdown.

or

press any number key to start entering a new value

The entering comprises two digits each. Enter minutes and seconds, e.g.: 2 minutes, 0 seconds = [Shift] + [0][2][0][0]. Confirm with $[_]$ key.

Countdown 02:00 The display shows:

Start countdown with [4] key.

start: ॄ

After countdown has finished the colorimeter reverts to the previous display automatically.

2.3 Operation mode

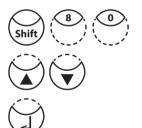
Switch the photometer on by pressing the [ON/OFF] key.

Autotest ...

The photometer performs an electronic self-test.

2.3.1 Automatic switch off

The instrument switches off automatically after 20 minutes. This is indicated 30 seconds before by a beeper. Press any key to avoid the instrument switching off.


As long as the instrument is working (for example countdown or printing) the automatic switch off is inactive.

2.3.2 Selecting a method

The display shows a selection:

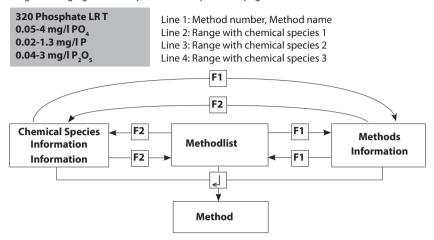
There are two possibilities to select the required method:

a) enter method-number directly e.g.: [Shift] + [8] [0] to select Bromine

b) press arrow key $[\nabla]$ or $[\Delta]$ to select the required method from the displayed list.

Confirm with [] key.

2.3.2.1 Method-Information (F1)


Use [F1] key to switch between the compact and the detailed list for method selection.

Example:

Line 1: Method number, Method name 100 Chlorine Line 2: Range 0.02-6 mg/l Cl Line 3: Kind of reagent **Tablet** 24 mm Line 4: Vial DPD No 1 Line 5-7: Used reagent DPD No 3 tube = reagent vial contained in tube test

2.3.2.2 Chemical Species Information

Pressing the [F2] key the display shows a list with available chemical species and corresponding ranges. Changing chemical species see chapter 2.3.7 page 198.

2.3.3 Differentiation

 $\label{lem:possible} Differentiation is possible in some methods (e.g. Chlorine). The photometer then requires the type of determination.$

Press arrow key $[\P]$ or $[\blacktriangle]$ to select the required determination

Confirm with [4] key.

2.3.4 Performing Zero

The display shows:

Prepare a clean vial as described in "Method" and place the vial in the sample chamber making sure that the ∑ marks are aligned.

Press [ZERO] key.

Zero accepted prepare Test press TEST

The display shows:

2.3.5 Performing Tests

When zero calibration is complete, remove the vial from the sample chamber and perform the tests as described under "Method".

When the results have been displayed:

- at some methods you can change between different chemical species
- you can store and/or print out the results
- perform further analysis with the same zero
- select a new method

2.3.6 Ensuring reaction periods (countdown)

For the compliance of reaction periods a time delay is incorporated, the countdown. There are two kinds of countdowns:

Press [] key.
 Prepare water sample, start countdown with [] key and proceed as described in the mode description.
 The vial must not be placed in the sample chamber.

Countdown 1:59 · Press [TEST] key.

Prepare the water sample as described in the method description and place the vial in the sample chamber. The display shows the countdown by pressing the [TEST] key and the countdown is started automatically. After the reaction period is finished the measurement starts automatically.

Notes:

1. It is possible to finish the working countdown by pressing the [] key. Reading starts immediately. In this case the operator is responsible for ensuring the necessary reaction period by himself.

Non-compliance with reaction periods lead to incorrect test results.

2. The time remaining is displayed continuously. The beeper indicates the last 10 seconds.

2.3.7 Changing chemical species

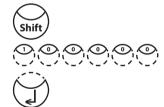
For some methods there is a possibility to change the chemical species of the test result. If the test result is displayed press arrow key $[\blacktriangle]$ or $[\blacktriangledown]$.

Example:

In some testing parameters, an alternative form of the chemical species is available—if so, it is decribed in the test procedure(s). If the special species of a test result is changed, the displayed range is adjusted automatically. The last displayed chemical species is kept by the instrument and will be displayed if this method is used the next time. The arrows with the possible chemical species are printed below the notes of the method:

- ▲ PO₄
- ▼ P.O.

If a result is already stored in memory, it is not possible to change the chemical species.


2.3.8 Storing results

Press [STORE] key during the test result is displayed.

Code-No.:

The display shows:

 We advise you to enter a numeric code (up to 6 places).
 (A Code-No. can contain references to the operator or the sample-taking place.)

After entering confirm with [4] key.

If a code number is not necessary confirm by pressing
 [] directly. (The assignment for the Code-No. is then 0
 automatically.)

The entire data set is stored with date, time, Code-No., method and test result.

Stored!

The display shows:

The test result is then shown again.

Note:

Storage: 900 free records left

The display shows the number of free data sets.

Storage: only 29 free records left

If there are less than 30 data sets free the display shows:

Clear the memory as soon as possible (see "Deleting stored results"). If memory capacity is used up it would be impossible to save additional test results.

2.3.9 Printing results (Infra-Red Interface Module) (optional)

If the IRIM (see chapter 2.5) is switched on and the printer is connected, it is possible to print out the test results (without saving it before).

Press [F3] key.

The entire data set is printed with date, time, Code-No., method and test result. Printing example:

100 Chlorine T 0.02-6 mg/l Cl₂ Profi-Mode: no 2006-07-01 14:53:09 Test No.: 1 Code-Nr.: 007 4.80 mg/l Cl₂

The test No. is an internal number that is set automatically if a test result is stored. It appears only at the print out.

To perform additional tests using the same method:

2.3.10 Perform additional measurements

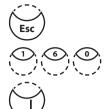
Press [TEST] key

Zero accepted prepare Test press TEST

The display shows:

Confirm with [TEST] key

or


Zero

Press [ZERO] key to perform a new zero calibration.

prepare Zero press ZERO

The display shows:

2.3.11 Selecting a new method

Press [ESC] key to return to method selection.

Or enter the required method number directly, e.g. [Shift] + [1][6][0] for Cyanuric acid.

Confirm with [] key.

2.3.12 Measure absorbance

Range: -2600 mAbs to +2600 mAbs

Method-No.	Title	
900	mAbs 430 nm	
910	mAbs 530 nm	
920	mAbs 560 nm	
930	mAbs 580 nm	
940	mAbs 610 nm	
950	mAbs 660 nm	

Select the desired wavelength from the method list or by entering the corresponding method-number directly.

900 mAbs 430 nm -2600 mAbs - + 2600 mAbs prepare Zero press ZERO

The display shows e.g.:

Perform zeroing always with a filled (e.g. deionised water)

Zero accepted prepare Test press TEST

The display shows:

Perform measurement of the sample.

500 mAbs

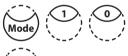
The display shows e.g.:

TIP: To ensure reaction times the User-Countdown may be helpful (chapter 2.2.3, page 194).

2.4 Photometer settings < MODE-Menu>

Table of Mode-Functions

MODE-Function	No.	Description	Page
Calibration	40	Performance of fluoride	215
Clear calibration	46	Deleting user calibration	220
Clock	12	Setting date and time	203
Countdown	13	Switching the countdown on/off to ensure reaction times	204
Delete data	34	Deleting all stored results	215
Key beep	11	Switching the acoustic signal on/off to indicate key- pressing	203
Langelier	70	Calculation of Langelier saturation Index (Water Balance)	232
Language	10	Selecting language	202
LCD contrast	80	Setting the display contrast	234
Method list	60	User method list, adaption	222
M list all on	61	User method list, switching on all methods	223
M list all off	62	User method list, switching off all methods	223
Print	20	Printing all stored results	206
Print, code-Nr.	22	Print only results of a selected Code-No. range	208
Print, date	21	Print only results of a selected time period	207
Print, method	23	Print only results of one selected method	209
Printing parameters	29	Setting of printing options	210
Profi-Mode	50	Switching the detailed operator instructions on/off	221
Signal beep	14	Switching the acoustic signal on/off to indicate end of reading	205
Storage	30	Displaying all stored results	211
Stor., code	32	Displaying only results of a selected Code-No. range	213
Stor., date	31	Displaying only results of a selected time period	212
Stor., method	33	Displaying only results of one selected method	214
System-info	91	Information about the instrument e.g. current software-version	234
Temperature	71	Selection of °C or °F for Langelier Mode 70	233
User calibration	45	Storage user calibration	219


User concentration	64	Entering of the data that are necessary to run a user concentration method	224
User polynoms	65	Entering of the data that are necessary to run a user polynomial	226
User methods clear	66	Delete all data of a user polynomial or of a concentration method	229
User methods print	67	Print out all data that are stored with mode 64 (concentration) or mode 65 (polynomial)	230
User methods init	69	Initialize the user-method system (polynomial and concentration)	231

The selected settings are kept by the photometer also after it was switched off. To change photometer settings a new setting is required.

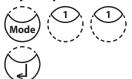
2.4.1 Purposely left blank [technical requirements]

2.4.2 Instrument basic settings 1

Selecting a language

 $Press\ [MODE],\ [Shift]+[1][0]\ keys.$

Confirm with [4] key.


The display shows:

Press arrow key $[\, lackbox{$\checkmark$}]$ or $[\, lackbox{$\triangle$}]$ to select the required language from the displayed list.

Confirm with $[\cup]$ key.

Key-beep

Press [MODE], [Shift] + [1][1] keys.

Confirm with [key.

<Key-Beep>
ON: 1 OFF: 0

The display shows:

- Press [Shift] + [0] key to switch the key beep off.
- Press [Shift] + [1] key to switch the key beep on.

Confirm with [4] key.

Note:

In the case of methods with reaction periods, an acoustic signal still sounds during the last 10 seconds of the countdown even if the key-beep is switched off.

Setting date and time

Press [MODE], [Shift] + [1][2] keys.

Confirm with [| key.

The display shows:

The entering comprises two digits each.

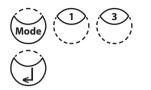
yy-mm-dd hh:mm 06-05-14 __:_

Enter year, month and day, e.g.: 14. Mai 2006 = [Shift] + [0][6][0][5][1][4]

yy-mm-dd hh:mm 06-05-14 15:07

Enter hours and minutes e.g.: 3.07 p.m. = [Shift] + [1][5][0][7]

Confirm with [key.


Note:

While conforming date and time with [4] key the seconds are adjusted to zero automatically.

Countdown (Ensuring reaction periods)

Some methods require a reaction period. This reaction period is incorporated in the method as standard by the countdown function.

It is possible to switch the countdown off for all methods:

Press [MODE], [Shift] + [1][3] keys.

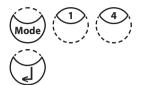
Confirm with [ع] key.

<Countdown>
ON: 1 OFF: 0

The display shows:

- Press [Shift] + [0] key to switch the countdown off.
- Press [Shift] + [1] key to switch the countdown on.

Confirm with [] key.


Notes:

- 1. It is possible to finish the working countdown by pressing the [] key (application e.g. serial analysis).
 - The "user-countdown" is also available if the countdown is switched off.
- 2. If the countdown function is switched off, the operator is responsible for ensuring the necessary reaction period by himself.

Non-compliance with reaction periods lead to incorrect test results.

Signal-beep

Performing a zero or a measurement takes 8 seconds. The photometer indicates the end of zeroing or measuring by a short beep.

Press [MODE], [Shift] + [1][4] keys.

Confirm with $[\cup]$ key.

The display shows:

- Press [Shift] +[0] key to switch the signal-beep off.
- Press [Shift] + [1] key to switch the signal-beep on.

Confirm with [| key.

Note:

In the case of methods with reaction periods, an acoustic signal still sounds during the last 10 seconds of the countdown even if the key-beep is switched off.

2.4.3 Printing of stored results

Printing all results

Press [MODE], [Shift] + [2][0] keys.

Confirm with [4] key.

The display shows:

Press [4] key for printing out all stored test results.

The display shows e.g.:

After printing the photometer goes back to <Mode-Menu> automatically.

Note:

It is possible to cancel the entering by [ESC]. All stored data are printed out. See chapter 2.5.1 Print of data.

Printing results of a selected time period

Press [MODE], [Shift] + [2][1] keys.

Confirm with [] key.

<Print> sorted: date from yy-mm-dd The display shows:

Enter year, month and day for the first day of the required period, e.g.: 14 Mai 2006 = [Shift] + [0][6][0][5][1][4]

Confirm with [4] key.

to yy-mm-dd

The display shows:

Enter year, month and day for the last day of the required period, e.g.: 19 Mai 2006 = [Shift] + [0][6][0][5][1][9]

Confirm with [key.

from 2006-05-14 to 2006-05-19 Start: cancel: ESC

The display shows:

Press [] key and all stored results in the selected date range are printed.

After printing the photometer goes back to mode menu automatically.

Note:

It is possible to cancel the entering by [ESC].

If you want to print only results of one day enter the same date twice to characterize the period.

Printing results of a selected Code-No. range

Press [MODE], [Shift] + [2][2] keys.

Confirm with [4] key.

<Print>
sorted: Code-No.
from_____

The display shows:

Enter numeric code number (up to 6 places) for the first required Code-No., e.g.: [Shift] + [1].

Confirm with [] key.

to_____

The display shows:

Enter numeric code number (up to 6 places) for the last required Code-No., e.g.: [Shift] + [1][0].

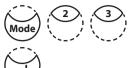
Confirm with [] key.

from 000001 to 000010 Start:

cancel: ESC

The display shows:

Press [4] key and all stored results in the selected Code-Number range are printed.


After printing the photometer goes back to mode menu automatically.

Note:

It is possible to cancel the entering by [ESC].

If you want to print only results of one Code-Number enter the same Code-Number twice. If you want to print all results without Code-No. (Code-Nr. is 0) enter Zero [0] twice.

Printing results of one selected method

Press [MODE], [Shift] + [2][3] keys.

Confirm with [4] key.

<Print> >>20 Acid demand 30 Alkalinity-tot 40 Aluminium T

The display shows:

Select the required method from the displayed list or enter the method-number directly.

Confirm with [4] key.

In case of differentiated methods select the required kind of determination and confirm with [4] key.

<Print> method 30 Alkalinity-tot Start: cancel: ESC

The display shows:

Press [ع] key and all stored results of the selected method are printed.

After printing the photometer goes back to mode menu automatically.

Note:

It is possible to cancel the entering by [ESC].

Printing Parameter

Press [MODE], [Shift] + [2][9] keys.

Confirm with [] key.

<printing parameter>
1: Flow control

2: Baud rate

The display shows:

cancel:

ESC

Press [Shift] + [1] key to select "Flow control".

<Flow Control>
is: Xon/Xoff

select: [▲] [▼] save:

save: cancel: ESC The display shows:

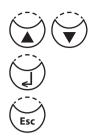
Press arrow key $[\mathbf{V}]$ or $[\mathbf{A}]$ to select the required Protocol. (Xon/Xoff, no control)

Confirm with [4] key.

Finish with [ESC] key.

Flow Control will be set to the selection displayed at "is".

Press [Shift] + [2] key to select "Baud rate".


<Baud rate>

select: [▲] [▼]

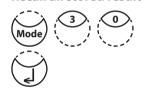
save: cancel:

ESC

The display shows:

Press arrow key **[▼]** or **[▲]** to select the required baud rate. (1200, 2400, 4800, 9600, 14400, 19200)

Confirm with [4] key.


End with [ESC] key.

Back to Mode-Menu with [ESC] key.

Back to method selection with [ESC] key.

2.4.4 Recall / delete stored results

Recall all stored results

Press [MODE], [Shift] + [3][0] keys.

Confirm with [4] key.

<Storage> display all data

Start: a cancel: ESC print: F3

print: F3 print all: F2

The display shows:

The stored data sets are displayed in chronological order, starting with the latest stored test result. Press [[] key and all stored results are displayed.

- Press [F3] key to print the displayed result.
- Press [F2] key to print all results.
- End with [ESC].
- Press arrow key [▼] to display the following test result.
- Press arrow key [▲] to display the previous test result.

If there are no test results in memory the display shows:

no data

Recall results of a selected time period

Press [MODE], [Shift] + [3][1] keys.

Confirm with [] key.

<Storage> sorted: date from yy-mm-dd The display shows:

Enter year, month and day for the for the first day of the required period, e.g.: 14 Mai 2006 = [Shift] + [0][6][0][5][1][4]

Confirm with [4] key.

to yy-mm-dd

The display shows:

Enter year, month and day for the last day of the required period, e.g.: 19 Mai 2006 = [Shift] +[0][6][0][5][1][9]

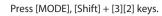
Confirm with [4] key.

from 2006-05-14 to 2006-05-19

Start: print: F3 print all: F2

The display shows:

- Press [4] key and all stored results in the selected date range are displayed.
- Press [F3] key to print the displayed result.
- Press [F2] key to print all selected results.
- End with [ESC].


It is possible to cancel the entering by [ESC].

If you want to recall only results of one day enter the same date twice to select the time period.

Recall results of a selected Code-No. range

Confirm with [4] key.

<Storage> sorted: Code-No. from

The display shows:

Enter numeric code number (up to 6 places) for the first required Code-No., e.g.: [Shift] + [1].

Confirm with [4] key.

The display shows:

Enter numeric code number (up to 6 places) for the last required Code-No., e.g.: [Shift] + [1][0].

Confirm with [4] key.

from 000001 000010 to Start: print: F3 print all: F2

The display shows:

- Press [ع] key and all stored results in the selected Code-No. range are displayed.
- Press [F3] key to print the displayed result.
- Press [F2] key to print all selected results.
- End with [ESC].

Note:

It is possible to cancel the entering by [ESC].

If you want to recall only results of one Code-Number enter the same Code-Number twice. If you want to recall all results without Code-No. (Code-Nr. is 0) enter Zero [0] twice.

Recall results of one selected method

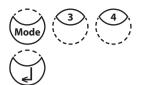
Press [MODE], [Shift] + [3][3] keys.

Confirm with [4] key.

<Storage>
>>20 Acid demand
30 Alkalinity-tot
40 Aluminium T

The display shows:

Select the required method from the displayed list or enter the method-number directly.


Confirm with [] key.

In case of differentiated methods select the required kind of determination and confirm with [4] key.

The display shows:

- Press [] key and all stored results of the selected method are displayed.
- Press [F3] key to print the displayed result.
- Press [F2] key to print all selected results.
- End with [ESC].

Delete stored results

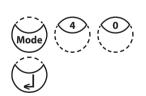
Press [MODE], [Shift] + [3][4] keys.

Confirm with [] key.

<Delete data>
Delete all data?
YES:1 NO:0

The display shows:

- Press [Shift]+[0] key to retain the data sets in memory.
- After pressing key [Shift] + [1] the following acknowledgment is displayed:


<Delete data> Delete data ↓ Do not delete: ESC Press [4] key to delete.

NOTE / CAUTION! All stored test results will be deleted!

or cancel without deleting data by pressing [ESC] key.

2.4.5 Calibration

Calibration Fluoride

Regard notes!

Press [MODE], [Shift] + [4][0] keys.

Confirm with [key.

The display shows:

<Calibration>
170 Fluoride
Zero: deionized water
press ZERO

- Fill a clean vial (24 mm Ø) with exactly 10 ml of deionised water, close tightly with the cap.
- 2. Place the vial in the sample chamber making sure that the marks $\sqrt{}$ are aligned.

- 3. Press ZERO key.
- 4. Remove the vial from the sample chamber.
- Add exactly 2 ml SPADNS reagent solution to the water sample. Caution: Vial is filled up to the top!
- 6. Close the vial tightly with the cap and swirl gently several times to mix the contents.
- Place the vial in the sample chamber making sure that the

 marks are aligned.
- 8. Press **TEST** key.
- Remove the vial from the sample chamber, empty the vial, rinse vial and cap several times and then fill the vial with exactly 10 ml Fluoride standard (Concentration 1 mg/l F).
- Add exactly 2 ml SPADNS reagent solution to the Fluoride standard.

Caution: Vial is filled up to the top!

- Place the vial in the sample chamber making sure that the ∑ marks are aligned.
- 12. Press TEST key.

The display shows:

Confirm with [4] key.

Back to method selection with [ESC] key.

Select method Fluoride with keys [Shift] + [1][7][0] + [هـ].

Note:

The same batch of SPADNS reagent solution must be used for adjustment and test. The adjustment process needs to be performed for each new batch of SPADNS reagent solution (see Standard Methods, 20th edition, 1998, APHA, AWWA, WEF 4500 F D., S. 4-82).

As the test result is highly dependent on exact sample and reagent volumes, the sample and reagent volumes should always be metered by using a 10 ml resp. 2 ml volumetric pipette (class A).


If an error message is displayed, please repeat adjustment.

Zero accepted T1: 0 mg/l F press TEST

T1 accepted T2: 1 mg/l F press TEST

Calibration accepted

Error, absorbance T2>T1

User-Calibration

If a test method is user calibrated, the method name will be displayed in inverse order.

Procedure:

- Prepare a standard of known concentration and use this standard instead of the sample according to the test procedure.
- It is recommend to use well known standards which are formulated according to DIN EN, ASTM or other international norms or to use certified standards which are commercially available.
- · After measuring this standard solution it is possible to change the displayed results to the required value.
- If a method uses a mathematical equation for the calculation of the result, it is only possible to calibrate the basic tests since all the other tests use the same polynomial.
- The same applies for some test procedures which use a polynomial of another test procedure.

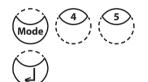
Return to factory calibration:

If the user calibration is deleted the factory calibration is automatically activated.

Remarks:

Table

The method "Fluoride" cannot be calibrated with mode 45 since the test requires a calibration related to the batch of the liquid reagent (SPADNS) (mode 40, chapter "calibration (fluoride)").


No.	Method	Recommended range for user user-calibration
20	Acid demand	1-3 mmol/l
35	Alkalinity-p	100-300 mg/l CaCO ₃
30	Alkalinity-total	50-150 mg/I CaCO ₃
40	Aluminum T	0.1-0.2 mg/l Al
50	Aluminum PP	0.1-0.2 mg/l Al
60	Ammonium T	0.3-0.5 mg/l N
62	Ammonium PP	0.3-0.5 mg/l N
65	Ammonium LRTT	1 mg/l N
66	Ammonium HRTT	20 mg/l N
85	Boron	1 mg/l B
80	Bromine	Calibration with basic test 100 Chlorine free
90	Chloride	10-20 mg/l Cl
100	Chlorine T	0.5-1.5 mg/l Cl
101	Chlorine L	Calibration with basic test 100 Chlorine free
110	Chlorine PP	0.5-1 mg/l Cl ₂
105	Chlorine (KI) HR	70-150 mg/l Cl
120	Chlorine dioxide	Calibration with basic test 100 Chlorine free
130	COD LR	$100 \mathrm{mg/l}\mathrm{O}_{2}$
131	COD MR	$500 \mathrm{mg/l}\mathrm{O}_{2}$
132	COD HR	$5 \text{ g/l O}_2 = 5000 \text{mg/lO}_2$
150	CopperT	0.5-1.5 mg/l Cu

No.	Method	Recommended range for user user-calibration	
153	Copper PP	0.5-1.5 mg/l Cu	
157	Cyanide	0.1-0.3 mg/l CN	
160	Cyanuric acid	30-60 mg/I Cys	
165	DEHA T	200-400 µg/l DEHA	
167	DEHA PP	200 μg/l DEHA	
170	Fluoride	Calibration with 0 und 1 mg/l F through Mode 40	
190	Hardness, Calcium	100-200 mg/l CaCO,	
200	Hardness, total T	15-25 mg/l CaCO ₃	
201	Hardness, total HRT	Calibration with basic test 200 Chlorine free	
205	Hydrazine P	0.2-0.4 mg/l N ₂ H ₄	
206	Hydrazine L	0.2-0.4 mg/I N ₃ H ₄	
207	Hydrazine C	0.2-0.4 mg/I N ₃ H ₄	
210	Hydrogen peroxide	Calibration with basic test100 Chlorine free	
215	lodine	Calibration with basic test 100 Chlorine free	
220	Iron T	0.3-0.7 mg/l Fe	
222	Iron PP	0.1-4 mg/l Fe	
223	Iron (TPTZ) PP	0.3-0.7 mg/l Fe	
240	Manganese T	1-2 mg/l Mn	
242	Manganese PP	0.1-0.4 mg/l Mn	
243	Manganese HR PP	4-6 mg/l Mn	
250	Molybdate T	5-15 mg/l Mo	
252	Molybdate HR PP	10-30 mg/l Mo	
265	Nitrate TT	10 mg/l N	
270	Nitrite T	0.2-0.3 mg/l N	
272	Nitrite LR PP	0.1-0.2 mg/l N	
280	Nitrogen, total LR	10 mg/l N	
281	Nitrogen, total HR	50-100 mg/l N	
300	Ozone (DPD)	Calibration with basic test 100 Chlorine free	
290	Oxygen, active	Calibration with basic test 100 Chlorine free	
292	Oxygen, dissolved	possible against meter for dissolved oxygen	
280	Nitrogen, total LR	10 mg/l N	
281	Nitrogen, total HR	50-100 mg/l N	
329	pH-Value LR	6.0-6.6	
330	pH-Value T	7.6-8.0	
331	pH-Value L	7.6-8.0	
332	pH-Value HR	8.6-9.0	
70	PHMB	15-30 mg/l	
320	Phosphate LRT	1-3 mg/l PO ₄	
321	Phosphate HRT	30-50 mg/l PO ₄	
323	Phosphate, ortho PP	0.1-2 mg/l PO ₄	
324	Phosphate, ortho TT	3 mg/l PO ₄	
327	Phosphate 1, ortho C	20-30 mg/I PO ₄	
328	Phosphate 2, ortho C Phosphate, total TT	1-3 mg/l PO ₄	
325	• •	0.3-6 mg/l P	
326	Phosphate, hydr. TT Potassium	0.3-0.6 mg/L P	
340	Silica	3 mg/l K 0.5-1.5 mg/l SiO ₃	
350	JIIICa	0.5-1.3 HIG/1310 ₂	

No.	Method	Recommended range for user user-calibration
351	Silica LR PP	1 mg/l SiO ₂
352	Silica HR PP	50 mg/l SiO ₂
212	Sodium hypochlorite	8 %
360	Sulfate PP	50 mg/l SO ₄
355	Sulfate T	50 mg/l SO ₄
365	Sulfide	0.2-0.4 mg/l S
370	Sulfite	3-4 mg/l SO ₃
390	Urea	1-2 mg/l CH ₄ N ₂ O
400	Zinc	0.2-0.4 mg/L Zn

Store user-calibration

100 Chlorine T 0.02-6 mg/l Cl2 0.90 mg/l free Cl2 Perform the required method as described in the manual using a standard of known concentration instead of the water sample.

If the test result is displayed press [MODE], [Shift] + [4] [5] keys and confirm with [4] key.

<user calibration>
100 Chlorine T
0.02-6 mg/l Cl2
0.90 mg/l free Cl2
up: ↑, down: ↓
save: ↓

The display shows:

Pressing the arrow key $[\blacktriangle]$ once increases the displayed result.

Pressing the arrow key $[\ensuremath{\nabla}]$ once decreases the displayed result.

Press keys till the displayed result corresponds to the value of the standard.

Confirm with [4] key to store the new calibration factor. Cancel user calibration by pressing [ESC] key.

Jus Factor saved

The display shows:

100 Chlorine T 0.02-6 mg/l Cl2 1.00 mg/l free Cl2

Now, the method name is displayed inverse and the test result is calculated with the new calibration factor.

Delete user-calibration

This chapter only applies for methods which can be user-calibrated.

100 Chlorine T 0.02-6 mg/l Cl2

Select the required method.

prepare ZERO press ZERO

Instead of zeroing the instrument press [MODE], [Shift] + [4] [6] keys and confirm with [4] key.

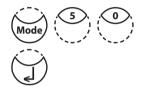
<user calibration>
100 Chlorine T
0.02-6 mg/l Cl2
clear user
calibration?
YES: 1, NO: 0

The display shows:

Press [Shift] + [1] key to delete user-calibration.

Press [Shift] + [0] key to keep the valid user-calibration.

The instrument goes back to Zero-query automatically.


2.4.6 Lab function

Reduced operator guidance => "Profi-Mode"

This function may be used for routine analyses with many samples of one method. The following information is always stored in the methods:

- a) Method
- b) Range
- c) Date and time
- d) Differentiation of results
- e) Detailed operator instruction
- f) Compliance with reaction periods

If the Profi-Mode is active, the photometer provides only a minimum of operator instructions. The criteria specified above d, e, f are not longer included.

Press [MODE], [Shift] + [5][0] keys in succession.

Confirm with [] key.

<Profi-Mode> ON:1 OFF:0

The display shows:

- Press [Shift] + [0] key to switch the Profi-Mode off.
- Press [Shift] + [1] key to switch the Profi-Mode on.

switched off

The display shows:

or

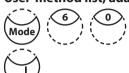
switched on

Confirm with [4] key.

Note:

Storage of test results is possible. In case of stored test results the display shows "Profi-Mode" additionally.

The selected settings are kept by the photometer also after it was switched off. To change photometer setting a new setting is required.


2.4.7 User operations

User-method list

After switching on the instrument a scroll list of all available methods is automatically shown in the display. To shorten this list according to the requirements of the user it is possible to create a user defined scroll list.

The program structure requires that this list must have at least one active (switched on) method. For this reason it is necessary to activate first all required methods and than to switch off the automatic activated one if this one is not required.

User-method list, adaptation

Press [MODE], [Shift] + [6][0] keys.

Confirm with [4] key.

<Method list> selected: •

togale: F2 save: 🗸

cancel: ESC

The display shows:

Start with [4] key.

<Method list> >> 30. Alkalinity-tot 40.Aluminium

50-Ammonium

The complete method list is displayed.

Methods with a point [•] behind the method number will be displayed in the method selection list. Methods without a point will not be displayed in the method selection list.

>> 30.Alkalinity-tot

Press key [▲] or [▼] to select the required method from the displayed list.

>> 30 Alkalinity-tot

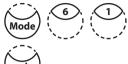
Switch with [F2] key between "active" [1] and "inactive" [1].

Select next method, activate or inactivate it and so on.

>> 30.Alkalinity-tot

Confirm with [4] key.

Cancel without storing by pressing [ESC] key.


Recommendation:

If only a few methods are required it is recommendable to perform Mode 62 first, followed by Mode 60.

All user-Polynomials (1-25) and -Concentrations (1-10) are displayed in the method list, although they are not programmed by the user. Non-programmed user-methods can't be activated!

User-method list, switch all methods on

This mode function activates all methods. After switching on the instrument a scroll list of all available methods is automatically shown in the display.

Press [MODE], [Shift] + [6][1] kevs.

Confirm with [4] key.

<Mlist all on> switch on all methods YES: 1, NO: 0

The display shows:

- Press [Shift] + [1] key to display all methods in the method selection list.
- Press [Shift] + [0] key to keep the valid method selection list.

The instrument goes back to mode-menu automatically.

User-method list, switch all methods off

The program structure requires that the method list must have at least one active (switched on) method. For this reason the instrument activates one method automatically.

Press [MODE], [Shift] + [6][2] keys.

Confirm with [4] key.

<Mlist all off> switch off all methods YES: 1, NO: 0

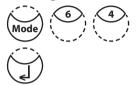
The display shows:

Press [Shift] + [1] key to display only one method in the method selection list.

Press [Shift] + [0] key to keep the valid method selection list.

The instrument goes back to mode-menu automatically.

User-Concentration-Methods


It is possible to enter and store up to 10 User-Concentration-Methods.

Therefore, you need 2 to 14 standards of known concentration and one blank (deionized water or reagent blank value). The Standards should be measured with increasing concentrations and from the brightest to the darkest coloration.

The measuring range for "Underrange" and "Overrange" is defined with -2600 mAbs* and +2600 mAbs*. After selection of a method the concentration of the lowest and highest used standard is displayed as measuring range. The operation range should be within these ranges to achieve best results.

*1000 mAbs = 1 Abs = 1 E (displayed)

Entering a User Concentration:

Press [MODE], [Shift] + [6][4] keys.

Confirm with [key.

Enter-Procedure:

The display shows:

< User concentr.> choose no.: ____ (850-859)

Enter a method-number in the range from 850 to 859, e.g.: [Shift] + [8][5][0]

Confirm with [4] key.

Overwrite conc. meth.? YES: 1, NO: 0

wavelength: 1: 530 nm 4: 430 nm 2: 560 nm 5: 580 nm 3: 610 nm 6: 660 nm

Note:

if the entered number has already been used to save a concentration the display shows the query:

- Press [Shift] + [0] or [ESC] key to go back to method-No. query.
- Press [Shift] + [1] key to start entry-mode.

Enter the required wavelength, e.g.: [Shift] + [2] for 560 nm.

choose unit:

>> mg/l
g/l
mmol/l
mAbs

µg/l
E
A
%

Press [▲] or [▼] keys to select the required unit.

choose resolution

1:1

2:0.1

3:0.01

4: 0.001

Press the appropriate numerical key to select the required resolution, e.g.: [Shift] + [3] for 0.01.

Note:

Please enter the required resolution according to the instrument presetting:

range	max. resolutions
0.0009.999	0.001
10.0099.99	0.01
100.0 999.9	0.1
10009999	1

Measurement procedure with standards of known concentration:

The display shows:

Prepare Zero and press [Zero] key.

Note:

Use deionized water or reagent blank value.

The display shows:

Enter the concentration of the first standard; e.g.: [Shift] + [0][.][0][5]

- One step back with [ESC].
- Press [F1] key to reset numerical input.

Confirm with [4] key.

The display shows:

Prepare the first standard and press [Test] key.

The display shows the input value and the measured extinction value. Confirm with $[\[\]$ key.

Enter the concentration of the second standard; e.g.: [Shift] + [0][.][1]

- One step back with [ESC].
- Press [F1] key to reset numerical input.

Confirm with [4] key.

< User concentr.> prepare Zero press ZERO

< User concentr.> Zero accepted

S1:+

ا ا ESC | F1

< User concentr.> S1: 0.05 mg/l prepare press TEST

S1: 0.05 mg/l mAbs: 12

\$1 accepted \$2: +_____ | | ESC | F1

S2: 0.10 mg/l prepare press TEST

S2: 0.10 mg/l mAbs: 150

S2 accepted S3: +______

Prepare the second standard and press [Test] key.

The display shows the input value and the measured extinction value. Confirm with [] key.

Note:

- Perform as described above to measure further standards
- The minimum of measured standards is 2.
- The maximum of measured standards is 14 (S1 to S14).

If all required standards or the maximum value of 14 standards are measured press [Store] key.

The display shows:

The instrument goes back to the mode menu automatically.

Now the concentration is stored in the instrument and can be recalled by entering its method number or selecting it from the displayed method list.

TIP:

Save all your concentration data in a written form because in case of power outage (e.g. changing the battery) all concentration data will be lost and must be entered again.

You might want to use Mode 67 to transfer all concentration data to a PC.

User-Polynomials

It is possible to enter and store up to 25 User-Polynomials.

The program allows the user to apply a Polynomial up to the 5th degree:

$$v = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5$$

If only a Polynomial of a lower degree is necessary the other coefficients are specified as zero (0), e.g.: for the 2nd degree is D, E, F = 0.

The values of the coefficients A, B, C, D, E, F must be entered in an academic notation with maximal 6 decimal places, e.g.: 121,35673 = 1,213567E+02

Entering a User-Polynomial:

Press [MODE], [Shift] + [6][5] keys.

Confirm with [4] key.

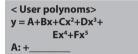
<User polynoms> choose no.: ____ (800-824) The display shows:

Enter a method-number in the range from 800 to 824, e.g.: [Shift] + [8][0][0]

Overwrite polynom? YES: 1, NO: 0 Confirm with [key.

Note:

if the entered number has already been used to save a polynomial the display shows the query:


- Press [Shift] + [0] or [ESC] key to go back to method-No. query.
- Press [Shift] + [1] key to start entry-mode.

Enter the required wavelength, e.g.: [2] for 560 nm.

1: 530 nm 4: 430 nm 2: 560 nm 5: 580 nm 3: 610 nm 6: 660 nm

A: 1.32____ E+___

B: +____

• Press $[\![\Delta \!]\!]$ or $[\![\nabla \!]\!]$ key to change between plus and minus sign

- Enter data of the coefficient A including decimal point, e.g.: [Shift] + [1][.][3][2]
- Press [F1] key to reset numerical input.

Confirm with [4] key.

- Press [▲] or [▼] key to change between plus and minus sign
- Enter the exponent of the coefficient A, e.g.: [Shift] + [3]

Confirm with [4] key.

Successively the instrument queries the data for the other coefficients (B, C, D, E and F).

Note:

If zero [0] is entered for the value of the coefficient, the input of the exponent is omitted automatically.

Confirm every input with [4] key.

measurement range Min mAbs: +____ Max mAbs: +

Enter measurement ranges from -2600 to + 2600 mAbs.

- Press [▲] or [▼] key to change between plus and minus sign.
- Enter the values in Absorbance (mAbs) for the upper limit (Max) and the lower limit (Min).

Confirm every input with [4] key.

choose unit: >> mg/l g/l mmol/l mAbs µg/l E A

Press $[\blacktriangle]$ or $[\blacktriangledown]$ keys to select the required unit.

Confirm with [4] key.

choose resolution

1: 1 2: 0.1 3: 0.01 4: 0.001

Press the appropriate numerical key to select the required resolution, e.g.: [Shift] + [3] for 0.01.

Note:

Please enter the required resolution according to the instrument presetting:

range	max. resolutions
0.0009.999	0.001
10.0099.99	0.01
100.0 999.9	0.1
10009999	1

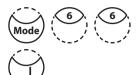
stored!

The display shows:

The instrument goes back to the mode menu automatically.

Now the polynomial is stored in the instrument and can be recalled by entering its method number or selecting it from the displayed method list.

TIP:


Save all your polynomial data in a written form because in case of power outage (e.g. changing the battery) all polynomial data will be lost and must be entered again.

You might want to use Mode 67 to transfer all polynomial data to a PC.

Delete User-Methods (Polynomial or Concentration)

A valid user-method can be overwritten.

An existing user-method (Polynomial or Concentration) can be totally deleted as well and is removed out of the method selection list:

Press [MODE], [Shift] + [6][6] keys.

Confirm with [] key.

<User m. clear> choose no.: (800-824), (850-859) The display shows:

Enter the number of the User-Method you want to delete (in the range from 800 to 824 or 850 to 859), e.g.: [Shift] + [8] [0][0]

Confirm with [4] key.

M800 delete? YES: 1, NO: 0 There is displayed the query:

 Press [Shift] + [1] key to delete the selected User-Method.

Press [Shift] + [0] key to keep the valid User-Method.

The instrument goes back to mode menu automatically.

Print Data of User-Methods (Polynomials & Concentration)

With these Mode function all data (e.g. wavelength, unit ...) of stored user-polynomial and concentration methods can be printed out or transferred with HyperTerminal to a PC.

Press [MODE], [Shift] + [6][7] keys.

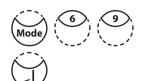
Confirm with [4] key.

<User m. print>
Start:

The display shows:

Press [_] key to print out the data (e.g. wavelength, unit, ...) of all stored User-Methods.

The display shows e.g.:


After data transfer the photometer goes back to mode menu automatically.

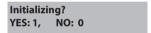
Initialize User-Method-System (Polynomials & Concentration)

Power loss at the storage device will cause incoherent data. The user-method system must be initialized with this mode function to set it to a predefined state.

ATTENTION:

All stored user-methods (polynomial & concentration) are deleted with initialization.

Press [MODE], [Shift] + [6][9] keys.


Confirm with [key.

The display shows:

Confirm with [] key.

There is displayed the query:

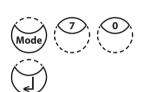
• Press [Shift] + [1] key to start initialization.

• Press [Shift] + [0] key to to cancel without initialization.

The instrument goes back to mode menu automatically.

2.4.8 Special functions

Langelier Saturation Index (Water Balance)


For calculation the following tests are required:

- · pH-value
- Temperature
- · Calcium hardness
- Total Alkalinity
- TDS (Total Dissolved Solids)

Run the test separately and note the results.

Calculate the Langelier Saturation Index as described:

Calculation of Langelier Saturation Index

With Mode 71 (see below) it is possible to select between degree Celsius or degree Fahrenheit.

Press [MODE], [Shift] + [7][0] keys.

Confirm with [] key.

<Langelier>
temperature °C:
3°C <=T<=53°C

The display shows:

Enter the temperature value (T) in the range between 3 and 53°C and confirm with [4] key. If °F was selected, enter the temperature value in the range between 37 und 128°F.

calcium hardness 50<=CH<=1000 The display shows:

Enter the value for Calcium hardness (CH) in the range between 50 and 1000 mg/l CaCO₃ and confirm with [4] key.

tot. alkalinity 5<=TA<=800

The display shows:

Enter the value for Total Alkalinity (TA) in the range between 5 and 800 mg/l CaCO_3 and confirm with [4] key.

total dissol. solids 0<=TDS<=6000

The display shows:

 $(\dot{\gamma})$

Enter the value for TDS (Total Dissolved Solids) in the range between 0 und 6000 mg/l and confirm with [4] key.

232

pH value 0<=pH<=12 +____

The display shows:

Enter the pH-value in the range between 0 and 12 and confirm with $[_]$ key.

<Langelier>
Langelier
saturation index
0.00
Esc _

The display shows the Langelier Saturation Index.

Press [4] key to start new calculation.

Return to mode menu by pressing [ESC] key.

Operating error:

Examples:

Values out of defined range:

CH<=1000 mg/l CaCO3!

The entered value is too high.

CH>=50 mg/l CaCO3!

The entered value is too low.

Confirm display message with $[\cline{L}_{\bullet}]$ key and enter a value in the defined range.

Selection of temperature unit

Entering the temperature value is possible in degrees Celsius or degrees Fahrenheit. Therefore the following preselection is (once) required.

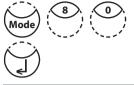
Press [MODE], [Shift] + [7][1] keys.

Confirm with [] key.

<temperature> 1: °C 2: °F

The display shows:

Press [Shift] + [1] key to select degrees Celsius.



Press [Shift] + [2] key to select degrees Fahrenheit.

The instrument goes back to mode menu automatically.

2.4.9 Instrument basic settings 2

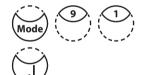
Adjusting display contrast

Press [MODE], [Shift] + [8][0] keys.

Confirm with [] key.

The display shows:

 Press arrow key [A] to increase contrast of the LCD display.


Press arrow key [▼] to decrease contrast of the LCD display.

Confirm with [] key.

2.4.10 Instrument special functions /service

Colorimeter-Information

Press [MODE], [Shift] + [9][1] keys.

Confirm with [] key.

<System-Info> Software: V201.001.1.001.002 more: ↓, cancel: Esc

This method informs you about the current software version, about the current detected mains power supply, about the number of performed tests and free memory capacity.

Press arrow key [**V**] to display the number of performed tests and free memory capacity.

<System-Info> Number of Tests: 139 free records left

999 cancel: Esc

Finish with [ESC] key.

2.5 Data transfer

To print data or to transmit them to a PC the optional available IRIM (Infra-Red Interface Module) is required.

2.5.1 Print of data

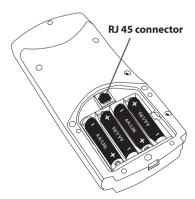
Beside the IRIM-module the following printer is required to print data directly using the USB Interface of the modul: HP Deskjet 6940.

2.5.2 Data transfer to a personal computer

Beside the IRIM a transfer program, is required to transmit test results.

Please find detailed information in the IRIM manual or at our homepage in the download-area.

2.5.3 Internet-Updates


To connect the instrument with the serial interface of a computer the optional available connection cable with integrated electronic system is necessary.

It is possible to update new software applications and additional languages via internet. Please find detailed information at our homepage on the download-area (as soon as available).

For information on how to open and close the battery compartment cover, see chapter 2.1.3.

Note:

To prevent loss of stored test results store or print out them before performing an Update. If the update procedure will be interrupted (eg. interruption of connection, LoBat., etc.) the instrument isn't able to work (no display answer). The instrument will only be able to work again after a complete data transfer.

This page intentionally left blank.

Part 3

Contents & Delivery

3.1 Unpacking

Carefully inspect all items to ensure that every part of the list below is present and no visible damage has occurred during shipment. If there is any damage or something is missing, please contact your local distributor immediately.

3.2 Delivery content

Standard o	content of MC500:
\bigvee	
	1 Photometer in plastic case
	4 batteries (size; Type AA/LR 6)
	1 Instruction manual
	1 Guarantee declaration
	1 Certificate of compliance
	Adapter for 16 mm Ø (Outside Diameter) vials
	Adapter for 13 mm Ø (Outside Diameter) vials
	Round vials with cap, height 48 mm, Ø 24 mm (Outside Diameter)
	Round vials with cap, height 90 mm, Ø 16 mm (Outside Diameter)
	Cleaning brush
	Stirring rod, plastic

Reagent sets, IRIM-modul and connection cable with intrgrated electronic system are not part of the standard scope of delivery. Please see the General Catalogue for details of available reagent sets.

3.3 blank because of technical requirements

3.4 Technical data

Display Graphic-Display

Serial Interface IR-interface for data transfer

RJ45 connector for internet-updates (see chapter 2.5.3)

Light source light-emitting diode – photosensor – pair arrangement

in a transparent measurement chamber

Wavelength ranges:

 $\lambda 1 = 530$ nm IF $\Delta \lambda = 5$ nm $\lambda 2 = 560$ nm IF $\Delta \lambda = 5$ nm $\lambda 3 = 610$ nm IF $\Delta \lambda = 6$ nm $\lambda 4 = 430$ nm IF $\Delta \lambda = 5$ nm $\lambda 5 = 580$ nm IF $\Delta \lambda = 5$ nm $\lambda 6 = 660$ nm IF $\Delta \lambda = 5$ nm IF = Interference filter

Wavelength accuracy $\pm 1 \text{ nm}$

Photometric accuracy* $2\% \text{ Fs } (T = 20^{\circ}\text{C} - 25^{\circ}\text{C})$

Photometric resolution 0.005 A

Operation Acid and solvent resistant touch-sensitive keyboard with

integral beeper as acoustic indicator.

Power supply 4 batteries (Type AA/LR 6);

lifetime: approx. 26 h continuous use or 3500 tests

Auto off 20 minutes after last function,

30 seconds acoustical signal before switch off

Dimensions approx. 210 x 95 x 45 mm (unit)

approx. 395 x 295 x 106 mm (case)

Weight (unit) approx. 450 g

Working condition 5 – 40°C at max. 30 – 90% relative humidity

(without condensation)

Language options English, German, French, Spanish, Italian, Portuguese,

Polish; further languages via Internet-Update

Storage capaity 1000 data sets

Subject to technical modification!

^{*} measured with standard solutions

3.5 Abbreviations

Abbreviation	Definition	
°C	degree Celsius (Centigrade)	
°F	degree Fahrenheit °F = (°C x 1.8) + 32	
°dH	degree German Hardness	
°fH	degree French hardness	
°eH	degree English Hardness	
°aH	degree American Hardness	
Abs	Absorption unit (≜ Extinction E) 1000 mAbs = 1 Abs ≜ 1 A ≜ 1 E	
μg/l	(= ppb) Microgram per liter	
mg/l	(= ppm) Milligram per liter	
g/l	(= ppth) gram per liter	
KI	Potassium iodide	
K s 4.3	Acid demand to pH 4.3 – this method is similar to the Total Alkalinity but converted into the unit "mmol/I", as the German DIN 38409 demand.	
TDS	Total Dissolved Solids	
LR	Low Range	
MR	Medium Range	
HR	High Range	
С	Reagents of Chemetrics [©]	
L	Liquid reagent	
Р	Powder (-reagent)	
PP	Powder Pack	
Т	Tablet	
TT	Tube Test	
DEHA	N,N-Diethylhydroxylamine	
DPD	Diethyl-p-phenylendiamine	
DTNB	Ellmans reagent	
PAN	1-(2-Pyridylazo)-2-napthol	
PDMAB	Paradimethylaminobenzaldehyde	
PPST	3-(2-Pyridyl)-5,6-bis(4-phenylsulfonic acid)1,2,4-triazine	
TPTZ	2,4,6-Tri-(2-Pyridyl)-1,3,5-triazine	

3.6 Troubleshooting

3.6.1 Operating messages in the display / error display

Display	Possible Causes	Resolution	
Overrange	reading is exceeding the range	if possible dilute sample or use other measuring range	
	water sample is too cloudy	filtrate water sample	
	too much light on the photo cell	seal on the cap? Repeat measurement with seal on the cap of the vial.	
Underrange	result is under the detection limit	indicate result with lower x mg/l x = low end of measuring range; if necessary use other analytical method	
Storagesystem error use Mode 34	power failure	insert or change battery. Delete data with Mode 34	
Battery warning			
	full capacity warning signal every 3 minutes warning signal every 12 seconds warning signal, the instrument switches itself off	capacity of the battery is too low; change the batteries	
Jus Overrange E4	The user calibration is out of the accepted range	Please check the standard, reaction time and other possible faults.	
Jus Underrange E4		Repeat the user calibration.	
Overrange E1	The concentration of the standard is too high/too low, so that during user-calibration the limit of the	Perform the test with a standard of higher/lower concentration	
Underrange E1	range was exceeded		
E40 user calibration not possible	If the display shows Overrange/ Underrange for a test result a user calibration is not possible	Perform the test with a standard of higher/lower concentration	
Zero not accepted	Light absorption is too great or too low	Refer to chapter 2.3.4 Performing Zero (page 196) Clean sample chamber. Repeat zeroing.	

Display	Possible Causes	Resolution
???	The calculation of a value (e.g. combined Chlorine) is not possible	Test procedure correct? If not – repeat test
Example 1 0,60 mg/l free Cl ??? comb Cl 0,59 mg/l total Cl		Example 1: The readings for free and total Chlorine are different, but considering the tolerances of each reading they are the same. For this reason the combined Chlorine is most likely zero.
Example 2 Underrange ??? comb Cl 1,59 mg/l total Cl		Example 2: The reading for free Chlorine is under the detection limit. The instrument is not able to calculate the combined Chlorine. In this case the combined Chlorine is most likely the same as the total Chlorine.
Example 3 0,60 mg/l free Cl ??? comb Cl Overrange		Example 3: The reading for total Chlorine is exceeding the range. The instrument is not able to calculate the combined Chlorine. The test should be repeated with a diluted sample.
Error absorbance e.g.: T2>T1	calibration of Fluoride was not correct	Repeat calibration

3.6.2 General problems

Problem	Possible Causes	Resolution
Test result deviates from the expected.	Chemical species not as required.	Press arrow keys to select the required chemical species.
No differentiation: e.g. for the test Chlorine there is no selection between differentiated, free or total.	Profi-Mode is switched on.	Switch Profi-Mode off with Mode 50.
The pre-programmed countdown is not displayed.	Countdown is not activated and/or the Profi-Mode is activated.	Switch the countdown on with Mode 13 and/or switch the Profi-Mode off with Mode 50.
It seems that a method is not available.	Method is not activated in the user method list.	Activate the required method in the user method list with Mode 60.

Camlab Limited Camlab House, Norman Way Over, Cambridge CB24 5WE United Kingdom